Skip to main content

Advertisement

Log in

Comparative statistical analysis of osteoporosis treatment based on Hungarian claims data and interpretation of the results in respect to cost-effectiveness

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The efficacy of interventions used in real life for the treatment of osteoporosis has not been evaluated on a national basis. We analysed the database of the single Hungarian health care provider between 2004 and 2010. A marked reduction in fracture incidence and hospitalization was seen, which also proved to be cost-effective.

Introduction

Osteoporosis and its consequences place a significant burden on the health care systems of developed countries. Present therapeutic modalities are effective in reducing the risk of fractures caused by osteoporosis. However, we do not know whether the interventions introduced in the past 15 years have significantly reduced the number of osteoporotic fractures in real life, and if yes, how cost-effectively.

Methods

The database of the National Health Insurance Fund Administration in Hungary was analysed for the period between 2004 and 2010. Two specific patient groups were identified within the population. Patients, who were under osteoporosis treatment in more than 80 % of the potential treatment days in three consecutive years (patients with high compliance), were compared with patients where this ratio was under 20 % (patients with low compliance). Several statistical comparative models were implemented in order to capture a complete picture on the differences. Because of natural data heterogeneity of administration databases, propensity matching was applied as well.

Results

Comparing treated vs. control subjects, patients with high compliance showed a significant decrease in fracture risk and hospitalization, which was more robust after propensity adjustment. On the basis of the observed statistically significant differences, cost-effectiveness analysis was implemented. Utility loss due the observed fractures was compared with the total cost differences of the two arms based on modelling. Our calculations proved the cost-effectiveness of the long-term high compliance in real world settings.

Conclusion

Our findings infer that the standardized and uniform health care of osteoporotic patients in a country may reduce general fracture incidence and hospitalization in a cost-effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  PubMed  Google Scholar 

  2. Huusko TM, Karppi P, Avikainen V, Kautiainen H, Sulkava R (1999) The changing picture of hip fractures: dramatic change in age distribution and no change in age-adjusted incidence within 10 years in Central Finland. Bone 24(3):257–259

    Article  CAS  PubMed  Google Scholar 

  3. Rogmark C, Sernbo I, Johnell O, Nilsson JA (1999) Incidence of hip fractures in Malmo, Sweden, 1992–1995. A trend-break. Acta Orthop Scand 70(1):19–22

    Article  CAS  PubMed  Google Scholar 

  4. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541

    Article  CAS  PubMed  Google Scholar 

  5. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765

    Article  CAS  PubMed  Google Scholar 

  6. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, Adami S, Fogelman I, Diamond T, Eastell R, Meunier PJ, Reginster JY (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344(5):333–340

    Article  CAS  PubMed  Google Scholar 

  7. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468

    Article  CAS  PubMed  Google Scholar 

  8. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    Article  CAS  PubMed  Google Scholar 

  9. D'Agostino RB Jr (1998) Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17(19):2265–2281

    Article  PubMed  Google Scholar 

  10. Agresti A (2002) Categorical data analysis. Wiley

  11. Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55

    Article  Google Scholar 

  12. Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B Methodol 34:187–220

    Google Scholar 

  13. Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley

  14. Schousboe JT, Gourlay M, Fink HA, Taylor BC, Orwoll ES, Barrett-Connor E, Melton LJ 3rd, Cummings SR, Ensrud KE (2013) Cost-effectiveness of bone densitometry among Caucasian women and men without a prior fracture according to age and body weight. Osteoporos Int 24(1):163–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Peasgood T, Herrmann K, Kanis JA, Brazier JE (2009) An updated systematic review of Health State Utility Values for osteoporosis related conditions. Osteoporos Int 20(6):853–868

    Article  CAS  PubMed  Google Scholar 

  16. Boros J, Nemeth R, Vitrai J (2002) National Health Interview Survey OLEF 2000, Research Report. National Centre for Epidemiology Publication 2002nd July

  17. Prieto L, Sacristan JA (2003) Problems and solutions in calculating quality-adjusted life years (QALYs). Health Qual Life Outcomes 1:80

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23(9):2239–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17(7):1237–1244

    Article  PubMed  Google Scholar 

  20. Mann E, Icks A, Haastert B, Meyer G (2008) Hip fracture incidence in the elderly in Austria: an epidemiological study covering the years 1994 to 2006. BMC Geriatr 8:35

    Article  PubMed Central  PubMed  Google Scholar 

  21. Grigorie D, Sucaliuc A, Vladescu C (2011) Hip fracture epidemiology in Romania: nationwide study 2005-2009. Osteoporos Int 22:323–323

    Google Scholar 

  22. Landfeldt E, Strom O, Robbins S, Borgstrom F (2012) Adherence to treatment of primary osteoporosis and its association to fractures—the Swedish Adherence Register Analysis (SARA). Osteoporos Int 23(2):433–443

    Article  CAS  PubMed  Google Scholar 

  23. Lakatos P, Tóth E, Zs L, Nagy B, Szekeres L, Takacs I (2012) Adherencia a magyar posztmenopauzális osteoporoticus női betegek körében. LAM KID 2(4):5–17

    Google Scholar 

  24. Confavreux CB, Canoui-Poitrine F, Schott AM, Ambrosi V, Tainturier V, Chapurlat RD (2012) Persistence at 1 year of oral antiosteoporotic drugs: a prospective study in a comprehensive health insurance database. Eur J Endocrinol 166(4):735–741

    Article  CAS  PubMed  Google Scholar 

  25. Siris ES, Harris ST, Rosen CJ, Barr CE, Arvesen JN, Abbott TA, Silverman S (2006) Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases. Mayo Clin Proc 81(8):1013–1022

    Article  PubMed  Google Scholar 

  26. Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3(3):281–290

    Article  CAS  PubMed  Google Scholar 

  27. Ross S, Samuels E, Gairy K, Iqbal S, Badamgarav E, Siris E (2011) A meta-analysis of osteoporotic fracture risk with medication nonadherence. Value Health 14(4):571–581

    Article  PubMed  Google Scholar 

  28. Olsen KR, Hansen C, Abrahamsen B (2013) Association between refill compliance to oral bisphosphonate treatment, incident fractures, and health care costs—an analysis using national health databases. Osteoporos Int 24(10):2639–2647

    Article  CAS  PubMed  Google Scholar 

  29. Reginster J, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, Lund B, Ethgen D, Pack S, Roumagnac I, Eastell R (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11(1):83–91

    Article  CAS  PubMed  Google Scholar 

  30. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822

    Article  CAS  PubMed  Google Scholar 

  31. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) Study. J Clin Endocrinol Metab 90(5):2816–2822

    Article  CAS  PubMed  Google Scholar 

  32. Huybrechts KF, Ishak KJ, Caro JJ (2006) Assessment of compliance with osteoporosis treatment and its consequences in a managed care population. Bone 38(6):922–928

    Article  PubMed  Google Scholar 

  33. Guilbert JJ (2003) The world health report 2002—reducing risks, promoting healthy life. Educ Health (Abingdon) 16(2):230

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This manuscript is original and all authors have seen and approved of its contents. This work was supported by a scientific grant from Osseus Foundation, Budapest, Hungary. We thank Dr. John Kanis for his invaluable comments on the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Takács.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakatos, P., Tóth, E., Szekeres, L. et al. Comparative statistical analysis of osteoporosis treatment based on Hungarian claims data and interpretation of the results in respect to cost-effectiveness. Osteoporos Int 25, 2077–2087 (2014). https://doi.org/10.1007/s00198-014-2733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2733-2

Keywords

Navigation