Skip to main content

Advertisement

Log in

Bone mineralization: from tissue to crystal in normal and pathological contexts

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  CAS  PubMed  Google Scholar 

  2. Boskey AL (2003) Bone mineral crystal size. Osteoporos Int 14(suppl 5):16–21

    Google Scholar 

  3. Bala Y, Depalle B, Douillard T, Meille S, Clément P, Follet H, Chevalier J, Boivin G (2011) Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented study. Journal of Biomechanical Behavior of Biomedical Materials 4:1473–1482

    Article  CAS  Google Scholar 

  4. Ferguson VL (2009) Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior. J Mech Behav Biomed Mater 2:364–374

    Article  CAS  PubMed  Google Scholar 

  5. Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G (2010) Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46:1204–1212

    Article  PubMed  Google Scholar 

  6. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  CAS  PubMed  Google Scholar 

  7. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–537

    CAS  PubMed  Google Scholar 

  8. Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800

    Article  CAS  PubMed  Google Scholar 

  9. Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315

    Article  CAS  PubMed  Google Scholar 

  10. Renders GA, Mulder L, van Ruijven LJ, Langenbach GE, van Eijden TM (2011) Mineral heterogeneity affects predictions of intratrabecular stress and strain. J Biomech 44:402–407

    Article  CAS  PubMed  Google Scholar 

  11. Currey JD (2006) The mechanical properties of bone. In: Currey JD (ed) Bones: structure and mechanics. Princeton University Press, Princeton, pp 54–122

    Google Scholar 

  12. Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482

    Article  CAS  PubMed  Google Scholar 

  13. Boivin G (2007) The hydroxyapatite crystal: a closer look. Medicographia 29:126–133

    Google Scholar 

  14. Cazalbou S, Combes C, Eichert D, Rey C, Glimcher MJ (2004) Poorly crystalline apatites: evolution and maturation in vitro and in vivo. J Bone Miner Metab 22:310–317

    Article  PubMed  Google Scholar 

  15. Fratzl P, Fratzl-Zelman N, Klaushofer K (1993) Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. Biophys J 64:260–266

    Article  CAS  PubMed  Google Scholar 

  16. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  17. Riggs CM, Lanyon LE, Boyde A (1993) Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol (Berl) 187:231–238

    CAS  Google Scholar 

  18. Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413

    Article  CAS  PubMed  Google Scholar 

  19. Svensson RB, Hassenkam T, Hansen P, Peter Magnusson S (2010) Viscoelastic behavior of discrete human collagen fibrils. J Mech Behav Biomed Mater 3:112–115

    Article  PubMed  Google Scholar 

  20. Viswanath B, Raghavan R, Ramamurty U, Ravishankar N (2007) Mechanical properties and anisotropy in hydroxyapatite single crystals. Scr Mater 57:361–364

    Article  CAS  Google Scholar 

  21. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445

    Article  PubMed  Google Scholar 

  22. Handschin RG, Stern WB (1995) X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 16:355–363

    Google Scholar 

  23. Fratzl P, Daxer A (1993) Structural transformation of collagen fibrils in corneal stroma during drying. An x-ray scattering study. Biophys J 64:1210–1214

    Article  CAS  PubMed  Google Scholar 

  24. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27(4):825–834

    Article  CAS  PubMed  Google Scholar 

  25. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly Zoledronic acid. J Bone Miner Res 26:12–18

    Article  CAS  PubMed  Google Scholar 

  26. Rey C, Renugopalakrishnan V, Shimizu M, Collins B, Glimcher MJ (1991) A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation. Calcif Tissue Int 49:259–268

    Article  CAS  PubMed  Google Scholar 

  27. Blumenthal NC, Betts F, Posner AS (1975) Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Res 18:81–90

    Article  CAS  PubMed  Google Scholar 

  28. LeGeros RZ, LeGeros JP (1983) Carbonate analysis of synthetic mineral and biological apatites. J Dent Res 62:259

    Google Scholar 

  29. LeGeros RZ, Trautz OR, Legeros JP, Klein E (1968) Carbonate substitution in the apatitic structure. Bull Soc Chim Fr 4:1712–1718

    Google Scholar 

  30. Petra M, Anastassopoulou J, Theologis T, Theophanides T (2005) Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone. J Molec Struct 733(1–3):101–110

    Article  CAS  Google Scholar 

  31. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    CAS  PubMed  Google Scholar 

  32. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  CAS  PubMed  Google Scholar 

  33. Meunier PJ, Boivin G (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21:373–377

    Article  CAS  PubMed  Google Scholar 

  34. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

    Article  CAS  PubMed  Google Scholar 

  35. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  CAS  PubMed  Google Scholar 

  36. Busa B, Miller LM, Rubin CT, Qin YX, Judex S (2005) Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 77:386–394

    Article  CAS  PubMed  Google Scholar 

  37. Boivin G, Meunier PJ (2003) Methodological considerations in measurement of bone mineral content. Osteoporos Int 14 Suppl 5: S22-7; discussion S27-8.

  38. Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789

    Article  CAS  PubMed  Google Scholar 

  39. Amprino R, Engstrom A (1952) Studies on x ray absorption and diffraction of bone tissue. Acta Anat (Basel) 15:1–22

    Article  CAS  Google Scholar 

  40. Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie LG, Meunier PJ, Delmas PD (2008) The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43:532–538

    Article  CAS  PubMed  Google Scholar 

  41. Boyde A, Jones SJ (1983) Back-scattered electron imaging of skeletal tissues. Metab Bone Dis Relat Res 5:145–150

    Article  PubMed  Google Scholar 

  42. Roschger P, Plenk H Jr, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc 9, discussion 86–8

    Google Scholar 

  43. Borah B, Ritman EL, Dufresne TE, Jorgensen SM, Liu S, Sacha J, Phipps RJ, Turner RT (2005) The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 37:1–9

    Article  CAS  PubMed  Google Scholar 

  44. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29:2672–2681

    Article  PubMed  Google Scholar 

  45. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    Article  CAS  PubMed  Google Scholar 

  46. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486

    Article  CAS  PubMed  Google Scholar 

  47. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  CAS  PubMed  Google Scholar 

  48. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469:2128–2138

    Article  PubMed  Google Scholar 

  49. Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10:031102

    Article  PubMed  CAS  Google Scholar 

  50. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    Article  CAS  PubMed  Google Scholar 

  51. Follet H, Viguet-Carrin S, Burt-Pichat B, Dépalle B, Bala Y, Gineyts E, Munoz F, Arlot ME, Boivin G, Chapurlat R, Delmas PD, Bouxsein ML (2011) Effects of pre-existing microdamage, collagen cross-links, degree of mineralization, age and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res 29:481–488

    Article  PubMed  Google Scholar 

  52. Baud CA, Gössi M (1980) Degree of mineralization of bone tissue as determined by quantitative microradiograhy: effect of age, sex and pathological conditions. In: Mazess RB (ed) Proceedings Fourth International Conference on Bone Measurement. NIH Publication, Bethesda, pp 345–352

    Google Scholar 

  53. Sutton-Smith P, Beard H, Fazzalari N (2007) Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J Microsc 229:60–66

    Article  Google Scholar 

  54. Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD, Bousson V (2009) The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study. Bone 45:435–442

    Article  CAS  PubMed  Google Scholar 

  55. Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F (2009) Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44:1043–1048

    Article  CAS  PubMed  Google Scholar 

  56. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    Article  CAS  PubMed  Google Scholar 

  57. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  CAS  PubMed  Google Scholar 

  58. Boivin G, Meunier PJ (2002) Effects of bisphosphonates on matrix mineralization. J Musculoskelet Neuronal Interact 2:538–543

    CAS  PubMed  Google Scholar 

  59. Farlay D, Bala Y, Bare S, Lappe J, Recker R, Boivin G (2012) Modifications of bone material properties early detected after one year of menopause in women. J Bone Miner Res 27:FR 0144

    Google Scholar 

  60. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678

    Article  CAS  PubMed  Google Scholar 

  61. Recker R, Lappe J, Davies K, Heaney R (2004) Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 19:1628–1633

    Article  PubMed  Google Scholar 

  62. Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191

    Article  CAS  PubMed  Google Scholar 

  63. Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21:1106–1112

    Article  CAS  PubMed  Google Scholar 

  64. Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD (2011) Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone 48:1252–1259

    Article  PubMed  Google Scholar 

  65. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343

    Article  CAS  PubMed  Google Scholar 

  66. Loveridge N, Power J, Reeve J, Boyde A (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  67. Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac CM (2000) A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 27:541–550

    Article  CAS  PubMed  Google Scholar 

  68. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61:487–492

    Article  CAS  PubMed  Google Scholar 

  69. Lindsay R, Zhou H, Cosman F, Nieves J, Dempster DW, Hodsman AB (2007) Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res 22:495–502

    Article  CAS  PubMed  Google Scholar 

  70. Recker RR, Marin F, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G, de la Pena MP, Kekow J, Farrerons J, Sanz B, Oertel H, Stepan J (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res 24:1358–1368

    Article  CAS  PubMed  Google Scholar 

  71. Bilezikian JP (2008) Combination anabolic and antiresorptive therapy for osteoporosis: opening the anabolic window. Curr Osteoporos Rep 6:24–30

    Article  PubMed  Google Scholar 

  72. Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649

    Article  CAS  PubMed  Google Scholar 

  73. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151–164

    Article  CAS  PubMed  Google Scholar 

  74. Roschger P, Dempster DW, Zhou H, Paschalis EP, Silverberg SJ, Shane E, Bilezikian JP, Klaushofer K (2007) New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res 22:717–723

    Article  PubMed  Google Scholar 

  75. Boivin G, Lips P, Ott SM, Harper KD, Sarkar S, Pinette KV, Meunier PJ (2003) Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab 88:4199–4205

    Article  CAS  PubMed  Google Scholar 

  76. Borah B, Dufresne TE, Ritman EL, Jorgensen SM, Liu S, Chmielewski PA, Phipps RJ, Zhou X, Sibonga JD, Turner RT (2006) Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39:345–352

    Article  CAS  PubMed  Google Scholar 

  77. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100:1475–1480

    Article  CAS  PubMed  Google Scholar 

  78. Misof BM, Bodingbauer M, Roschger P, Wekerle T, Pakrah B, Haas M, Kainz A, Oberbauer R, Muhlbacher F, Klaushofer K (2008) Short-term effects of high-dose zoledronic acid treatment on bone mineralization density distribution after orthotopic liver transplantation. Calcif Tissue Int 83:167–175

    Article  CAS  PubMed  Google Scholar 

  79. Bala Y, Farlay D, Chapurlat R, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655

    Article  CAS  PubMed  Google Scholar 

  80. Roschger P, Lombardi A, Misof BM, Maier G, Fratzl-Zelman N, Fratzl P, Klaushofer K (2010) Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res 25:48–55

    Article  CAS  PubMed  Google Scholar 

  81. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  CAS  PubMed  Google Scholar 

  82. Tjhia CK, Odvina CV, Rao DS, Stover SM, Wang X, Fyhrie DP (2011) Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone 49:1279–1289

    Article  PubMed  Google Scholar 

  83. Chavassieux P, Asser Karsdal M, Segovia-Silvestre T, Neutzsky-Wulff AV, Chapurlat R, Boivin G, Delmas PD (2008) Mechanisms of the anabolic effects of teriparatide on bone: insight from the treatment of a patient with pycnodysostosis. J Bone Miner Res 23:1076–1083

    Article  CAS  PubMed  Google Scholar 

  84. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, Klaushofer K (2004) Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab 89:1538–1547

    Article  CAS  PubMed  Google Scholar 

  85. Bollerslev J, Marks SC Jr, Mosekilde L, Lian JB, Stein GS, Mosekilde L (1994) Cortical bone osteocalcin content and matrix composition in autosomal dominant osteopetrosis type I. Eur J Endocrinol 130:592–594

    Article  CAS  PubMed  Google Scholar 

  86. Boskey AL, Marks SC Jr (1985) Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rats. Calcif Tissue Int 37:287–292

    Article  CAS  PubMed  Google Scholar 

  87. Hémar J, Sauvigné T, Bodard A-G, Boivin G (2012) Bone quality and osteonecrosis of the jaw induced by bisphsphonates. Med Buccale Chir Buccale 18:9–15

    Article  Google Scholar 

  88. Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673

    Article  CAS  PubMed  Google Scholar 

  89. Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677

    Article  CAS  PubMed  Google Scholar 

  90. Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975

    CAS  PubMed  Google Scholar 

  91. Doublier A, Farlay D, Jaurand X, Vera R, Boivin G (2012) Effects of strontium on the quality of bone apatite crystals: a paired biopsy study in postmenopausal osteoporotic women. Osteoporos Int. doi:10.1007/s00198-012-2181-9.

  92. Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578

    Article  CAS  PubMed  Google Scholar 

  93. Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425

    Article  CAS  PubMed  Google Scholar 

  94. Fratzl-Zelman N, Roschger P, Misof BM, Nawrot-Wawrzyniak K, Potter-Lang S, Muschitz C, Resch H, Klaushofer K, Zwettler E (2011) Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif Tissue Int 88:378–387

    Article  CAS  PubMed  Google Scholar 

  95. Ruiz-Gaspa S, Blanch-Rubio J, Ciria-Recasens M, Monfort J, Tio L, Garcia-Giralt N, Nogues X, Monllau JC, Carbonell-Abello J, Perez-Edo L (2010) Reduced proliferation and osteocalcin expression in osteoblasts of male idiopathic osteoporosis. Calcif Tissue Int 86:220–226

    Article  CAS  PubMed  Google Scholar 

  96. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  CAS  PubMed  Google Scholar 

  97. Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  CAS  PubMed  Google Scholar 

  98. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  CAS  PubMed  Google Scholar 

  99. Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, Klaushofer K, Roschger P (2010) CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone 46:820–826

    Article  CAS  PubMed  Google Scholar 

  100. Weber M, Roschger P, Fratzl-Zelman N, Schoberl T, Rauch F, Glorieux FH, Fratzl P, Klaushofer K (2006) Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 39:616–622

    Article  CAS  PubMed  Google Scholar 

  101. Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F (2008) Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int 82:263–270

    Article  CAS  PubMed  Google Scholar 

  102. Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26:581–589

    Article  CAS  PubMed  Google Scholar 

  103. Traub W, Arad T, Vetter U, Weiner S (1994) Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol 14:337–345

    Article  CAS  PubMed  Google Scholar 

  104. Meunier PJ, Sebert JL, Reginster JY, Briancon D, Appelboom T, Netter P, Loeb G, Rouillon A, Barry S, Evreux JC, Avouac B, Marchandise X (1998) Fluoride salts are no better at preventing new vertebral fractures than calcium–vitamin D in postmenopausal osteoporosis: the FAVO Study. Osteoporos Int 8:4–12

    Article  CAS  PubMed  Google Scholar 

  105. Vestergaard P, Jorgensen NR, Schwarz P, Mosekilde L (2008) Effects of treatment with fluoride on bone mineral density and fracture risk—a meta-analysis. Osteoporos Int 19:257–268

    Article  CAS  PubMed  Google Scholar 

  106. Boivin G, Meunier PJ (1989) Fluoride and bone toxicological and therapeutic aspects. In: Cohen RD, Alberti KGMM, Lewis B, Denman AM (eds) The metabolic and moecular basis of acquired disease. Baillière Tindall, London, pp 1803–1823

    Google Scholar 

  107. Jiang Y, Zhao J, Van Audekercke R, Dequeker J, Geusens P (1996) Effects of low-dose long-term sodium fluoride preventive treatment on rat bone mass and biomechanical properties. Calcif Tissue Int 58:30–39

    Article  CAS  PubMed  Google Scholar 

  108. Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone 10:89–99

    Article  CAS  PubMed  Google Scholar 

  109. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Miner Res 9:1541–1549

    Article  CAS  PubMed  Google Scholar 

  110. Eanes ED, Hailer AW (1998) The effect of fluoride on the size and morphology of apatite crystals grown from physiologic solutions. Calcif Tissue Int 63:250–257

    Article  CAS  PubMed  Google Scholar 

  111. Marie PJ, Glorieux FH (1981) Histomorphometric study of bone remodeling in hypophosphatemic vitamin D-resistant rickets. Metab Bone Dis Relat Res 3:31–38

    Article  CAS  PubMed  Google Scholar 

  112. Choufoer JH, Steendijk R (1979) Distribution of the perilacunar hypomineralized areas in cortical bone from patients with familial hypophosphatemic (vitamin D-resistant) rickets. Calcif Tissue Int 27:101–104

    Article  CAS  PubMed  Google Scholar 

  113. Marie PJ, Glorieux FH (1982) Bone histomorphometry in asymptomatic adults with hereditary hypophosphatemic vitamin D-resistant osteomalacia. Metab Bone Dis Relat Res 4:249–253

    Article  CAS  PubMed  Google Scholar 

  114. Durchschlag E, Paschalis EP, Zoehrer R, Roschger P, Fratzl P, Recker R, Phipps R, Klaushofer K (2006) Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate. J Bone Miner Res 21:1581–1590

    Article  CAS  PubMed  Google Scholar 

  115. Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61:298–305

    Article  CAS  PubMed  Google Scholar 

  116. Fuchs RK, Faillace ME, Allen MR, Phipps R, Miller LM, Burr D (2011) Bisphosphonates do not alter the rate of the secondary mineralization. Bone 49(4):701–705

    Article  CAS  PubMed  Google Scholar 

  117. Ebetino FH, Barnett BL, Russell RG (2005) A computational model delineates differences in hydroxyapatite binding affinities of bisphosphonates in clinical use. J Bone Miner Res 20(suppl 1):S259

    Google Scholar 

  118. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  CAS  PubMed  Google Scholar 

  119. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, Maasalu K, Bolognese MA, Woodson G, Bone H, Ding B, Wagman RB, San Martin J, Ominsky MS, Dempster DW (2010) Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res 25:2256–2265

    Article  CAS  PubMed  Google Scholar 

  120. Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure–function relations. J Struct Biol 126:241–255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Profs. Pierre J. Meunier (Lyon, France) and E. Seeman (Melbourne, Australia) for their constant advice and encouragement.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Boivin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bala, Y., Farlay, D. & Boivin, G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 24, 2153–2166 (2013). https://doi.org/10.1007/s00198-012-2228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2228-y

Keywords

Navigation