Skip to main content

Advertisement

Log in

Differential responsiveness to 17β-estradiol of mesenchymal stem cells from postmenopausal women between osteoporosis and osteoarthritis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Differential osteogenic potential and responsiveness to 17β-estradiol (E2) of mesenchymal stem cells (MSCs) were found between postmenopausal women with osteoporosis (OP) and osteoarthritis (OA). These results suggest differential biological mechanisms of estrogen deficiency in regulation of bone remodeling between OP and OA.

Introduction

OP and OA are two common disorders in postmenopausal women. The inverse relationship has been suggested between OP and OA, but their mechanisms that relate to estrogen deficiency are not fully understood. The aim of this study was to compare the differential responsiveness to E2 of MSCs from osteoporotic versus osteoarthritic donors.

Methods

Twenty postmenopausal patients, ten with osteoporotic hip fractures and ten with hip osteoarthritis, were included into this study. MSCs were derived from cancellous bones of femoral heads from OA and OP donors and cultured in osteogenic and adipogenic medium with or without E2 added. The alkaline phosphatase (ALP) activity, calcium content, calcified nodules, lipid droplets, messenger RNA (mRNA) expression of ALP, osteocalcin (OC), collagen 1α (COL1α), peroxisome proliferators-activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) were measured and compared between two groups with OP and OA.

Results

In osteogenic medium, ALP activity, calcium content and mRNA expression of OC and COL1α in MSCs from OA were significantly higher than those from OP group. In adipogenic condition, there was no significant difference in lipid droplets formation and mRNA expression of PPARγ2 and LPL between OP and OA groups. With E2 added in osteogenic medium, ALP activity, calcium content and OC mRNA were significantly higher in OP group than in OA group, whereas E2 had no significant effect on lipid droplet formation and mRNA expression of PPARγ2 and LPL.

Conclusion

Differential osteogenic potential and responsiveness to E2 of MSCs were found between postmenopausal women with OP and OA. These results may provide information for clinical application of MSCs in the differential setting of estrogen deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brandt KD, Dieppe P, Radin EL (2008) Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am 34:531–559

    Article  PubMed  Google Scholar 

  2. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, Duong LT (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206

    Article  PubMed  CAS  Google Scholar 

  3. Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont G (2010) Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 12:R152

    Article  PubMed  Google Scholar 

  4. Dequeker J, Aerssens J, Luyten FP (2003) Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 15:426–439

    PubMed  Google Scholar 

  5. Avci D, Bachmann GA (2004) Osteoarthritis and osteoporosis in postmenopausal women: clinical similarities and differences. Menopause 11:615–621

    Article  PubMed  Google Scholar 

  6. Roux C, Fechtenbaum J, Briot K, Cropet C, Liu-Leage S, Marcelli C (2008) Inverse relationship between vertebral fractures and spine osteoarthritis in postmenopausal women with osteoporosis. Ann Rheum Dis 67:224–228

    Article  PubMed  CAS  Google Scholar 

  7. Zhang ZM, Li ZC, Jiang LS, Jiang SD, Dai LY (2010) Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos Int 21:1383–1390

    Article  PubMed  Google Scholar 

  8. Lancianese SL, Kwok E, Beck CA, Lerner AL (2008) Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging. Bone 43:1039–1046

    Article  PubMed  Google Scholar 

  9. Li B, Aspden RM (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 56:247–254

    Article  PubMed  CAS  Google Scholar 

  10. Li B, Marshall D, Roe M, Aspden RM (1999) The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat 195:101–110

    Article  PubMed  Google Scholar 

  11. Sun SS, Ma HL, Liu CL, Huang CH, Cheng CK, Wei HW (2008) Difference in femoral head and neck material properties between osteoarthritis and osteoporosis. Clin Biomech 23(Suppl 1):S39–S47

    Article  Google Scholar 

  12. Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  13. Sniekers YH, Weinans H, Bierma-Zeinstra SM, van Leeuwen JP, van Osch GJ (2008) Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment: a systematic approach. Osteoarthr Cartil 16:533–541

    Article  PubMed  CAS  Google Scholar 

  14. Roman-Blas JA, Castaneda S, Largo R, Herrero-Beaumont G (2009) Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther 11:241

    Article  PubMed  Google Scholar 

  15. Wlucka AE, Cicuttini F, Spector TD (2000) Menopause, oestrogens and arthritis. Maturitas 35:183–199

    Article  Google Scholar 

  16. Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46:704–713

    Article  PubMed  Google Scholar 

  17. Dudics V, Kunstár A, Kovács J, Lakatos T, Géher P, Gömör B, Monostori E, Uher F (2009) Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system. Cells Tissues Organs 189:307–316

    Article  PubMed  CAS  Google Scholar 

  18. Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Bühring HJ, Stoop R (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25:3244–3251

    Article  PubMed  CAS  Google Scholar 

  19. Astudillo P, Ríos S, Pastenes L, Pino AM, Rodríguez JP (2008) Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem 103:1054–1065

    Article  PubMed  CAS  Google Scholar 

  20. Rodríguez JP, Ríos S, Fernandez M, Santibanez JF (2004) Differential activation of ERK1, 2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. J Cell Biochem 92:745–754

    Article  PubMed  Google Scholar 

  21. Zhang ZM, Jiang LS, Jiang SD, Dai LY (2009) Osteogenic potential and responsiveness to leptin of mesenchymal stem cells between postmenopausal women with osteoarthritis and osteoporosis. J Orthop Res 27:1067–1073

    Article  PubMed  CAS  Google Scholar 

  22. Hess R, Pino AM, Ríos S, Fernández M, Rodríguez JP (2005) High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cell Biochem 94:50–57

    Article  PubMed  CAS  Google Scholar 

  23. Ogita M, Rached MT, Dworakowski E, Bilezikian JP, Kousteni S (2008) Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 149:5713–5723

    Article  PubMed  CAS  Google Scholar 

  24. Hong L, Sultana H, Paulius K, Zhang G (2009) Steroid regulation of proliferation and osteogenic differentiation of bone marrow stromal cells: a gender difference. J Steroid Biochem Mol Biol 114:180–185

    Article  PubMed  CAS  Google Scholar 

  25. Hong L, Colpan A, Peptan IA (2006) Modulations of 17-β estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng 12:2747–2753

    Article  PubMed  CAS  Google Scholar 

  26. Jenei-Lanzl Z, Straub RH, Dienstknecht T, Huber M, Hager M, Grässel S, Kujat R, Angele MK, Nerlich M, Angele P (2010) Estradiol inhibits chondrogenic differentiation of mesenchymal stem cells via nonclassic signaling. Arthritis Rheum 62:1088–1096

    Article  PubMed  CAS  Google Scholar 

  27. Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814

    Article  PubMed  CAS  Google Scholar 

  28. Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D (2001) Estrogen modulates estrogen receptor α and β expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl 36:144–155

    Article  PubMed  Google Scholar 

  29. Jiang LS, Zhang ZM, Jiang SD, Chen WH, Dai LY (2008) Differential bone metabolism between postmenopausal women with osteoarthritis and osteoporosis. J Bone Miner Res 23:475–483

    Article  PubMed  Google Scholar 

  30. Dai LY (1996) The relationship between osteoarthritis and osteoporosis in the hip. J Orthop Rheumatol 9:214–216

    Google Scholar 

  31. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  PubMed  CAS  Google Scholar 

  32. Parfitt AM, Villanueva AR, Foldes J, Rao DS (1995) Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 10:466–473

    Article  PubMed  CAS  Google Scholar 

  33. Martínez J, Silva S, Santibanez JF (1996) Prostate-derived soluble factors block osteoblast differentiation in culture. J Cell Biochem 61:18–25

    Article  PubMed  Google Scholar 

  34. Leskela HV, Olkku A, Lehtonen S, Mahonen A, Koivunen J, Turpeinen M, Uusitalo J, Pelkonen O, Kangas L, Selander K, Lehenkari P (2006) Estrogen receptor α genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts. Bone 39:1026–1034

    Article  PubMed  Google Scholar 

  35. Logar DB, Komadina R, Prezelj J, Ostanek B, Trost Z, Marc J (2007) Expression of bone resorption genes in osteoarthritis and in osteoporosis. J Bone Miner Metab 25:219–225

    Article  PubMed  CAS  Google Scholar 

  36. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11:568–577

    Article  PubMed  CAS  Google Scholar 

  37. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, LeBoff MS, Glowacki J (2008) Age-related intrinsic changes in human bone-marrow derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343

    Article  PubMed  CAS  Google Scholar 

  38. Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 75:414–423

    Article  PubMed  CAS  Google Scholar 

  39. Herrero-Beaumont G, Roman-Blas JA, Largo R, Berenbaum F, Castaneda S (2011) Bone mineral density and joint cartilage: four clinical settings of a complex relationship in osteoarthritis. Ann Rheum Dis 70:1523–1525

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (No. U1032001).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-Y. Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, WJ., Jiang, SD., Jiang, LS. et al. Differential responsiveness to 17β-estradiol of mesenchymal stem cells from postmenopausal women between osteoporosis and osteoarthritis. Osteoporos Int 23, 2469–2478 (2012). https://doi.org/10.1007/s00198-011-1859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1859-8

Keywords

Navigation