Skip to main content

Advertisement

Log in

Present at the beginning: a personal reminiscence on the history of teriparatide

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The ability of parathyroid glandular extracts to stimulate bone acquisition in rodents was established in the 1920s, but interest in this action lay dormant for almost 50 years until application of contemporary laboratory methods permitted the large-scale production of an amino-terminal fragment of PTH, (1–34) hPTH (teriparatide), which was capable of carrying out all known actions of the full-length (1–84) PTH molecule. In the 1970s, largely stimulated by the efforts of a British pharmacologist, Dr. John Parsons, the scientific community began to revisit these anabolic actions and showed that single daily injections of teriparatide dramatically increased bone mass in several mammalian species and restored bone in oöphorectomized rats. Shortly thereafter, human studies confirmed a striking increase in trabecular bone mass and showed also that an important part of teriparatide’s action is to increase cortical bone. Eli Lilly and Company conducted a formal registration trial in postmenopausal women with osteoporosis. The unexpected occurrence of osteosarcomas in Fisher 344 rats treated long-term with teriparatide provoked an abrupt cessation of that trial, but ambiguity concerning the relevance of this rat finding to human disease, combined with significant anti-fracture efficacy, led to FDA approval of teriparatide for men and postmenopausal women with osteoporosis “at high risk for fracture” in 2002. Subsequently, teriparatide has been approved also for treatment of patients with glucocorticoid-associated osteoporosis, and papers indicating utility of this agent for dental and orthopedic applications have begun to appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Under the trade name Forteo in the USA and some other countries and Forsteo in the UK and Europe. Teriparatide is the generic term for hPTH(1–34). The Lilly product is produced by recombinant DNA technology.

  2. Lilly's familiarity with this clinical problem was likely influenced by the fact that the company is located in central Indiana, not far from the nationally prominent clinics that pioneered thyroid surgery.

  3. This change was made because a patent had been awarded to another scientist, Adolph Hanson, whose extraction methods had been published in 1923 prior to those of Collip.

  4. Aurbach's paper made an additional point which is of sufficient interest to quote here: “Early crude extracts which had marked effects on calcium metabolism also enhanced the excretion of phosphate in the urine. Other investigators had proposed that a distinct hormone may account for the latter effect. The isolation of a single substance, a potent mediator of both biological effects, seems to end this controversy [10].”

  5. The moratorium on human trials was voluntary and not required by FDA. In fact, a number of non-Lilly studies remained active throughout this period of uncertainty.

References

  1. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703

    Article  PubMed  CAS  Google Scholar 

  2. Albright F, Reifenstein EC Jr (1948) The parathyroid glands and metabolic bone disease. Williams & Wilkins Co, Baltimore

    Google Scholar 

  3. Collip JB (1925) The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J Biol Chem 63:395–438

    CAS  Google Scholar 

  4. Bauer W, Aub JC, Albright F (1929) Studies of calcium and phosphorus metabolism, V. A study of the bone trabeculae as a readily available reserve supply of calcium. J Exp Med 49:145–162

    Article  PubMed  CAS  Google Scholar 

  5. Selye H (1932) Histological evidence proved that parathyroid extract stimulates bone formation. Endocrinology 16:547–558

    Article  CAS  Google Scholar 

  6. Steenbock H, Black A (1925) Fat-soluble vitamins, XXIII. The induction of growth-promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. J Biol Chem 64:263–298

    CAS  Google Scholar 

  7. Hess AF, Weinstock M (1924) Antirachitic properties imparted to inert fluids and green vegetables by ultraviolet irradiation. J Biol Chem 62:301–313

    CAS  Google Scholar 

  8. Ellsworth R, Howard JE (1934) Studies on the physiology of the parathyroid glands. Bull Johns Hopkins Hosp 55:296–308

    CAS  Google Scholar 

  9. Rasmussen H, Westall RG (1957) The partial purification of parathyroid hormone by means of ultrafiltration and displacement chromatography. Biochem J 67:658–663

    PubMed  CAS  Google Scholar 

  10. Aurbach GD (1959) Isolation of parathyroid hormone after extraction with phenol. J Biol Chem 234:3179–3181

    PubMed  CAS  Google Scholar 

  11. Chase LR, Fedak SA, Aurbach GD (1969) Activation of skeletal adenyl cyclase by parathyroid hormone in vitro. Endocrinol 84:761

    Article  CAS  Google Scholar 

  12. Chase LR, Aurbach GD (1970) The effect of parathyroid hormone on the concentration of adenosine 3′,5′-monophosphate in skeletal tissue in vitro. J Biol Chem 245:1520

    PubMed  CAS  Google Scholar 

  13. Melson GL, Chase LR, Aurbach GD (1970) Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules. Endocrinol 86:511–518

    Article  CAS  Google Scholar 

  14. Chase LR, Aurbach GD (1967) Parathyroid function and the renal excretion of 3′,5′-adenylic acid. Proc Nat Acad Sci USA 58:518–525

    Article  PubMed  CAS  Google Scholar 

  15. Chase LR, Melson GL, Aurbach GD (1969) Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest 48:1832–1844

    Article  PubMed  CAS  Google Scholar 

  16. Marcus R, Aurbach GD (1969) Bioassay of parathyroid hormone in vitro with a stable preparation of adenyl cyclase from rat kidney. Endocrinol 85:801–810

    Article  CAS  Google Scholar 

  17. Niall, Keutmann, Sauer R, Hogan ML, Dawson BF, Aurbach GD, Potts JT Jr (1970) The amino acid sequence of bovine parathyroid hormone. Hoppe-Seyler Z Physiol Chem 351:1586–1588

    PubMed  CAS  Google Scholar 

  18. Brewer HB Jr, Ronan R (1970) Bovine parathyroid hormone: amino acid sequence. Proc Nat Acad Sci USA 67:1862–1869

    Article  PubMed  CAS  Google Scholar 

  19. Sauer RT, Niall HD, Hogan ML, Keutmann HT, O'Riordan JL, Potts JT (1974) The amino acid sequence of porcine parathyroid hormone. Biochem 13:1994–1999

    Article  CAS  Google Scholar 

  20. Brewer HB Jr, Fairwell T, Ronan R, Sizemore GW, Arnaud CD (1972) Human parathyroid hormone: amino acid sequence of the amino-terminal residues 1–34. Proc Natl Acad Sci USA 69:3585–3588

    Article  PubMed  CAS  Google Scholar 

  21. Niall HD, Sauer RT, Jacobs JW, Keutmann HT, Segre GV, O'Riordan JL, Aurbach GD, Potts JT (1974) The amino acid sequence of the amino-terminal 37 residues of human parathyroid hormone. Proc Nat Acad Sci USA 71:384–388

    Article  PubMed  CAS  Google Scholar 

  22. Keutmann HT, Niall HD, O’Riordan JLH, Potts JT Jr (1975) A reinvestigation of the amino-terminal sequence of human parathyroid hormone. Biochem 14:1842–1847

    Article  CAS  Google Scholar 

  23. Vasicek TJ, McDevitt BE, Freeman MW, Fennick BJ, Hendy GN, Potts JT Jr, Rich A, Kronenberg HM (1983) Nucleotide sequence of the human parathyroid hormone gene. Proc Natl Acad Sci USA 80:2127–2131

    Article  PubMed  CAS  Google Scholar 

  24. Keutmann HT, Dawson BF, Aurbach GD, Potts JT Jr (1972) A biologically active amino-terminal fragment of parathyroid hormone prepared by dilute acid hydrolysis. Biochem 11:1973–1979

    Article  CAS  Google Scholar 

  25. Tregear GW, van Rietschoten J, Greene E, Keutmann HT, Niall HJD, Reit B, Parsons JA, Potts JT Jr (1973) Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinol 93:1349–1353

    Article  CAS  Google Scholar 

  26. Murray TM, Rao LG, Muzaffar SA (1991) Dexamethasone-treated ROS 17/2.8 rat osteosarcoma cells are responsive to human carboxyterminal parathyroid hormone peptide hPTH(53–84): stimulation of alkaline phosphatase. Calcif Tissue Int 49:120–123

    Article  PubMed  CAS  Google Scholar 

  27. Divieti P, Geller AI, Suliman G, Jüppner H, Bringhurst FR (2005) Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone derived cells: determinants of ligand binding and bioactivity. Endocrinol 146(4):1863–1870

    Article  CAS  Google Scholar 

  28. Divieti P, Inomata N, Chapin K, Singh R, Jüppner H, Brinhurst FR (2001) Receptors for the carboxyl-terminal region of PTH(1–84) are highly expressed in osteocytic cells. Endocrinol 142:916–925

    Article  CAS  Google Scholar 

  29. Tregear GW, van Rietschoten J, Greene E, Niall HD, Keutmann HT, Parsons JA, O’Riordan JL, Potts JT Jr (1974) Solid-phase synthesis of the biologically active N-terminal 1–34 peptide of human parathyroid hormone. Hoppe-Seylers Z Physiol Chem 355:415–421

    Article  PubMed  CAS  Google Scholar 

  30. Parsons JA, Reit B (1974) Chronic response of dogs to parathyroid hormone infusion. Nature 250:254–257

    Article  PubMed  CAS  Google Scholar 

  31. Kalu DN, Doyle FH, Pennock J, Denys-Matrajt H, Foster GV (1970) Anabolic effect of parathyroid hormone on bone in the rat. Calcif Tissue Res Supplement 4(1):72

    Article  Google Scholar 

  32. Walker DG (1971) The induction of osteopetrotic changes in hypophysectomized, thyroparathyroidectomized, and intact rats of various ages. Endocrinol 89:1389–1406

    Article  CAS  Google Scholar 

  33. Mosekilde L, Reeve J (1996) Treatment with PTH peptides. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 1st edn. Academic, San Diego, pp 1293–1311

    Google Scholar 

  34. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OL, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FJFE, Potts JT Jr (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Brit Med J 280:1340–1344

    Article  PubMed  CAS  Google Scholar 

  35. Lindsay R, Nieves J, Formica C, Henneman E, Woelfert L, Shen V, Dempster D, Cosman F (1997) Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350:550–555

    Article  PubMed  CAS  Google Scholar 

  36. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, Shane E, Plavetić K, Müller R, Bilezikian J, Lindsay R (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 16:1846–1853

    Article  PubMed  CAS  Google Scholar 

  37. Silverberg SJ, Shane E, de la Cruz L, Dempster DW, Feldman F, Seldin D, Jacobs TP, Siris ES, Cafferty M, ParisienMV LR, Clemens TL, Bilezikian JP (1989) Skeletal disease in primary hyperparathyroidism. J Bone Miner Res 4:283–291

    Article  PubMed  CAS  Google Scholar 

  38. Dobnig H, Turner RT (1997) The effects of programmed administration of human parathyroid fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology 138(11):4607–4612

    Article  PubMed  CAS  Google Scholar 

  39. Dobnig H, Turner RT (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinol 136:3632–3638

    Article  CAS  Google Scholar 

  40. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446

    Article  PubMed  CAS  Google Scholar 

  41. Bellido T, Afshan A, Plotkin LI, Fu Q, Gubril I, Roberson PK, Weinstein RS, O'Brien CA, Manolagas S, Jiilka R (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts: a putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278(50):50259–50272

    Article  PubMed  CAS  Google Scholar 

  42. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    Article  PubMed  CAS  Google Scholar 

  43. Kulkarni NH et al (2005) Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem 95:1178–1190

    Article  PubMed  CAS  Google Scholar 

  44. Keller H, Kneissel M (2005) SOST is a target gene for PTH inbone. Bone 37:148–158

    Article  PubMed  CAS  Google Scholar 

  45. Leupin O, Kramer I (2007) Collette NM et al Control of the SOST bone enhancer by PTH via MEF2 transcription factors. J Bone Miner Res 22:1957–1967

    Article  PubMed  CAS  Google Scholar 

  46. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effectg of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 3344:1434–1441

    Article  Google Scholar 

  47. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85:3069–3076

    Article  PubMed  CAS  Google Scholar 

  48. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, Kauman JM, Clancy AD, Gaich GA (2003) The effect of teriparatide on bone density in men with osteoporosis. J Bone Miner Res 18:9–17

    Article  PubMed  CAS  Google Scholar 

  49. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  50. Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB, Treatment of Osteoporosis with Parathyroid Hormone Study Group (2007) Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 146:326–339

    PubMed  Google Scholar 

  51. Finkelstein JS, Wyland JJ, Lee H, Neer RM (2010) Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 95:1838–1845

    Article  PubMed  CAS  Google Scholar 

  52. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, Westmore MS, Ma YL, Nold JB (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol 30:312–321

    Article  PubMed  CAS  Google Scholar 

  53. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M (2004) Bone neoplasms in F344 rats given teriparatide are dependent on duration of treatment and dose. Toxicol Pathol 32:426–438

    Article  PubMed  CAS  Google Scholar 

  54. Jolette J, Wilker CE, Smith SY, Doyle N, Hardisty JF, Metcalfe AJ, Marriott TB, Fox J, Wells DS (2006) Defining a non-carcinogenic dose of recombinant human parathyroid hormone 1–84 in a 2 year study in Fisher 344 rats. Toxicol Pathol 34:929–940

    Article  PubMed  CAS  Google Scholar 

  55. Tashjian AH Jr, Goltzman D (2008) On the interpretation of rat carcinogenicity studies for PTH (1–34) and Human PTH (1–84). J Bone Miner Res 23:803–811

    Article  PubMed  CAS  Google Scholar 

  56. Harper KD, Krege JH, Marcus R, Mitlak BH (2007) Osteosarcoma and teriparatide? J Bone Miner Res 22:334, letter

    Article  PubMed  Google Scholar 

  57. Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039

    Article  PubMed  CAS  Google Scholar 

  58. Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, Giannobile WV, McCauley LK (2010) Teriparatide and osseous regeneration in the oral cavity. N Engl J Med. doi:10.1056/NEJMMoa1005361

    PubMed  Google Scholar 

  59. Aspenberg P, Genant HK, Johansson T, Nino A, See K, Krohn K, Garcia-Hernandez PA, Recknor CP, Einhorn TA, Dalsky GP, Mitlak BH, Fierlinger A, Lakshmanan MC (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25:404–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to the memory of Gerald Aurbach. I thank Drs. John Potts, Robert Jilka, and David Dempster for their input and assistance.

Conflicts of interest

The author is a retiree of Eli Lilly and Company. Advisory and speaking activities: Lilly, GlaxoSmithKline, Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Marcus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, R. Present at the beginning: a personal reminiscence on the history of teriparatide. Osteoporos Int 22, 2241–2248 (2011). https://doi.org/10.1007/s00198-011-1598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1598-x

Keywords

Navigation