Skip to main content

Advertisement

Log in

Quantitative genetic study of the circulating osteopontin in community-selected families

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The study assessed contribution of genetic factors to variability of osteopontin (OPN) levels. Evidence of association of OPN levels with polymorphisms in its structural gene and integrin-binding sialoprotein gene loci was obtained. The results motivate research of OPN-related proteins and genes with respect to biomineralization and other biological processes.

Introduction

OPN is a major phosphoprotein in bone, which plays key role in regulation of bone mineralization process. It is considered as a promising biomarker for osteoarthritis and osteoporosis, and various other pathological conditions. However, the contribution of genetics and other confounding factors to OPN circulating levels variation in general population has never been specifically determined. The main aims of the present study included (1) evaluation of the putative genetic and familial factors’ effect on OPN variability and (2) testing the hypothesis that OPN plasma levels are associated with the genetic polymorphisms in its structural gene locus (SPP1) and in integrin-binding sialoprotein gene locus (IBSP).

Methods

To address these questions, we used a family-based sample of 925 apparently healthy Caucasian individuals. Association of OPN levels with three SNPs in each of the two selected gene loci was explored using pedigree disequilibrium tests.

Results

Some 58% and 13% of the OPN levels variability were attributable to genetic factors and common spouse environment, respectively. Three SNPs showed nominally significant association with OPN (p < 0.05). Of these, rs2616262 linked to IBSP promoter region remained significant after correction for multiple testing (p = 0.003). Significant association of this SNP and rs10516799 (distal segment of SPP1) with OPN was confirmed in several statistical tests. Using a special modification of variance component analysis, we examined gene–gene and gene–sex interaction effects, but found non-significant confirmation for these hypotheses.

Conclusions

Further studies are required to confirm the observed results and to explore the underlying molecular and physiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arden N, Nevitt MC (2006) Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 20:3–25

    Article  PubMed  Google Scholar 

  2. Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10:92–96

    Article  PubMed  Google Scholar 

  3. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp 1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    Article  PubMed  CAS  Google Scholar 

  4. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139

    Article  PubMed  CAS  Google Scholar 

  5. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87

    Article  PubMed  CAS  Google Scholar 

  6. Buback F, Renkl AC, Schulz G, Weiss JM (2009) Osteopontin and the skin: multiple emerging roles in cutaneous biology and pathology. Exp Dermatol 18:750–759

    Article  PubMed  CAS  Google Scholar 

  7. Franzén A, Hultenby K, Reinholt FP, Onnerfjord P, Heinegård D (2008) Altered osteoclast development and function in osteopontin deficient mice. J Orthop Res 26:721–728

    Article  PubMed  Google Scholar 

  8. Chang IC, Chiang TI, Yeh KT, Lee H, Cheng YW (2010) Increased serum osteopontin is a risk factor for osteoporosis in menopausal women. Osteoporos Int 21:1401–1409

    Article  PubMed  CAS  Google Scholar 

  9. Honsawek S, Tanavalee A, Sakdinakiattikoon M, Chayanupatkul M, Yuktanandana P (2009) Correlation of plasma and synovial fluid osteopontin with disease severity in knee osteoarthritis. Clin Biochem 42:808–812

    Article  PubMed  CAS  Google Scholar 

  10. Matsui Y, Iwasaki N, Kon S, Takahashi D, Morimoto J, Matsui Y, Denhardt DT, Rittling S, Minami A, Uede T (2009) Accelerated development of aging-associated and instability-induced osteoarthritis in osteopontin-deficient mice. Arthritis Rheum 60:2362–2371

    Article  PubMed  CAS  Google Scholar 

  11. Gao SG, Li KH, Zeng KB, Tu M, Xu M, Lei GH (2010) Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthr Cartil 18:82–87

    Article  PubMed  CAS  Google Scholar 

  12. Sennels H, Sørensen S, Ostergaard M, Knudsen L, Hansen M, Skjødt H, Peters N, Colic A, Grau K, Jacobsen S (2008) Circulating levels of osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor-kappa B ligand, and high-sensitivity C-reactive protein in patients with active rheumatoid arthritis randomized to etanercept alone or in combination with methotrexate. Scand J Rheumatol 37:241–247

    Article  PubMed  CAS  Google Scholar 

  13. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345

    Article  PubMed  CAS  Google Scholar 

  14. Lund SA, Giachelli CM, Scatena M (2009) The role of osteopontin in inflammatory processes. J Cell Commun Signal 3:311–322

    Article  PubMed  Google Scholar 

  15. Cho HJ, Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11:206–213

    Article  PubMed  CAS  Google Scholar 

  16. Johnson K, Goding J, Van Etten D, Sali A, Hu SI, Farley D, Krug H, Hessle L, Millán JL, Terkeltaub R (2003) Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 18:994–1004

    Article  PubMed  CAS  Google Scholar 

  17. Rosenthal AK, Gohr CM, Uzuki M, Masuda I (2007) Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol 26:96–105

    Article  PubMed  CAS  Google Scholar 

  18. Willing MC, Torner JC, Burns TL, Janz KF, Marshall T, Gilmore J, Deschenes SP, Warren JJ, Levy SM (2003) Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study. Osteoporos Int 14:650–658

    Article  PubMed  CAS  Google Scholar 

  19. Taylor BC, Schreiner PJ, Doherty TM, Fornage M, Carr JJ, Sidney S (2005) Matrix Gla protein and osteopontin genetic associations with coronary artery calcification and bone density: the CARDIA study. Hum Genet 116:525–528

    Article  PubMed  CAS  Google Scholar 

  20. Richards JB, Kavvoura FK, Rivadeneira F, Styrkársdóttir U, Estrada K, Halldórsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD, Genetic Factors for Osteoporosis Consortium (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537

    PubMed  Google Scholar 

  21. D’Alfonso S, Barizzone N, Giordano M, Chiocchetti A, Magnani C, Castelli L, Indelicato M, Giacopelli F, Marchini M, Scorza R, Danieli MG, Cappelli M, Migliaresi S, Bigliardo B, Sabbadini MG, Baldissera E, Galeazzi M, Sebastiani GD, Minisola G, Ravazzolo R, Dianzani U, Momigliano-Richiardi P (2005) Two single-nucleotide polymorphisms in the 5′ and 3′ ends of the osteopontin gene contribute to susceptibility to systemic lupus erythematosus. Arthritis Rheum 52:539–547

    Article  PubMed  Google Scholar 

  22. Golledge J, Muller J, Shephard N, Clancy P, Smallwood L, Moran C, Dear AE, Palmer LJ, Norman PE (2007) Association between osteopontin and human abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 27:655–660

    Article  PubMed  CAS  Google Scholar 

  23. Kariuki SN, Moore JG, Kirou KA, Crow MK, Utset TO, Niewold TB (2009) Age- and gender-specific modulation of serum osteopontin and interferon-alpha by osteopontin genotype in systemic lupus erythematosus. Genes Immun 10:487–494

    Article  PubMed  CAS  Google Scholar 

  24. Biros E, Clancy P, Norman PE, Golledge J (2009) A genetic polymorphism in transforming growth factor beta receptor-2 is associated with serum osteopontin. Int J Immunogenet 36:241–244

    Article  PubMed  CAS  Google Scholar 

  25. Huq NL, Cross KJ, Ung M, Reynolds EC (2005) A review of protein structure and gene organisation for proteins associated with mineralised tissue and calcium phosphate stabilisation encoded on human chromosome 4. Arch Oral Biol 50:599–609

    Article  PubMed  CAS  Google Scholar 

  26. Malaval L, Aubin JE, Vico L (2009) Role of the small integrin-binding ligand N-linked glycoprotein (SIBLING), bone sialoprotein (BSP) in bone development and remodeling. Osteoporos Int 20:1077–1080

    Article  PubMed  CAS  Google Scholar 

  27. Bellahcène A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8:212–226

    Article  PubMed  Google Scholar 

  28. Livshits G, Karasik D, Kobyliansky E (2002) Complex segregation analysis of the radiographic phalanges bone mineral density and their age-related changes. J Bone Miner Res 17:152–161

    Article  PubMed  Google Scholar 

  29. Kalichman L, Malkin I, Livshits G, Kobyliansky E (2006) Age at menarche in a Chuvashian rural population. Ann Hum Biol 33:390–397

    Article  PubMed  Google Scholar 

  30. International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  31. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita P, Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M, Meyer L, Hsu F, Hillman-Jackson J, Harte RA, Giardine B, Dreszer T, Clawson H, Barber GP, Haussler D, Kent WJ (2010) The UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:D613–D619

    Article  PubMed  CAS  Google Scholar 

  32. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  33. Malkin I, Ginsburg E (2009) Program package for Mendelian analysis of pedigree data (MAN, Version 9). Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University; Technical Report

  34. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, London

    Google Scholar 

  35. Suk EK, Malkin I, Dahm S, Kalichman RN, Kobyliansky E, Toliat M, Rutsch F, Nürnberg P, Livshits G (2005) Association of ENPP1 gene polymorphisms with hand osteoarthritis in a Chuvasha population. Arthritis Res Ther 7:R1082–R1090

    Article  PubMed  CAS  Google Scholar 

  36. Korostishevsky M, Cohen Z, Malkin I, Ermakov S, Yarenchuk O, Livshits G (2010) Morphological and biochemical features of obesity are associated with mineralization genes’ polymorphisms. Int J Obes (Lond) 34(8):1308–1318

    Article  CAS  Google Scholar 

  37. D’Amore M, Fanelli M, D’Amore S, Fontana A, Minenna G (2006) Receptor activator of NF(Kappa)B ligand/osteoprotegerin (RANKL/OPG) system and osteopontin (OPN) serum levels in a population of apulian postmenopausal women. Panminerva Med 48:215–221

    PubMed  Google Scholar 

  38. de las Fuentes L, Gu CC, Mathews SJ, Reagan JL, Ruthmann NP, Waggoner AD, Lai CF, Towler DA, Dávila-Román VG (2008) Osteopontin promoter polymorphism is associated with increased carotid intima-media thickness. J Am Soc Echocardiogr 21:954–960

    Article  PubMed  Google Scholar 

  39. Liu CC, Huang SP, Tsai LY, Wu WJ, Juo SH, Chou YH, Huang CH, Wu MT (2010) The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin Chim Acta 411:739–743

    Article  PubMed  CAS  Google Scholar 

  40. Han S, Guthridge JM, Harley IT, Sestak AL, Kim-Howard X, Kaufman KM, Namjou B, Deshmukh H, Bruner G, Espinoza LR, Gilkeson GS, Harley JB, James JA, Nath SK (2008) Osteopontin and systemic lupus erythematosus association: a probable gene-gender interaction. PLoS ONE 3:e0001757

    Article  PubMed  Google Scholar 

  41. Chiocchetti A, Orilieri E, Cappellano G, Barizzone N, D Alfonso S, D Annunzio G, Lorini R, Ravazzolo R, Cadario F, Martinetti M, Calcaterra V, Cerutti F, Bruno G, Larizza D, Dianzani U (2010) The osteopontin gene +1239A/C single nucleotide polymorphism is associated with type 1 diabetes mellitus in the Italian population. Int J Immunopathol Pharmacol 23:263–269

    PubMed  CAS  Google Scholar 

  42. Chang YS, Kim HJ, Chang J, Ahn CM, Kim SK, Kim SK (2007) Elevated circulating level of osteopontin is associated with advanced disease state of non-small cell lung cancer. Lung Cancer 57:373–380

    Article  PubMed  Google Scholar 

  43. Lettre G (2009) Genetic regulation of adult stature. Curr Opin Pediatr 21:515–522

    Article  PubMed  Google Scholar 

  44. Zhang J, Tu Q, Chen J (2009) Applications of transgenics in studies of bone sialoprotein. J Cell Physiol 220:30–34

    Article  PubMed  CAS  Google Scholar 

  45. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Snorradóttir S, Center JR, Nguyen TV, Alexandersen P, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2009) New sequence variants associated with bone mineral density. Nat Genet 41:15–17

    Article  PubMed  CAS  Google Scholar 

  46. Koller DL, Ichikawa S, Lai D, Padgett LR, Doheny KF, Pugh E, Paschall J, Hui SL, Edenberg HJ, Xuei X, Peacock M, Econs MJ, Foroud T (2010) Genome-wide association study of bone mineral density in premenopausal European-American women and replication in African-American women. J Clin Endocrinol Metab 95:1802–1809

    Article  PubMed  CAS  Google Scholar 

  47. Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG, Genetic Factors for Osteoporosis (GEFOS) Consortium (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Israel Ministry of Health, Chief Scientist grant #3-4101.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Livshits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakov, S., Leonov, A., Trofimov, S. et al. Quantitative genetic study of the circulating osteopontin in community-selected families. Osteoporos Int 22, 2261–2271 (2011). https://doi.org/10.1007/s00198-010-1451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1451-7

Keywords

Navigation