Skip to main content

Advertisement

Log in

Vitamin D and human health: evidence from Mendelian randomization studies

  • META-ANALYSIS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

We summarized the current evidence on vitamin D and major health outcomes from Mendelian randomization (MR) studies. PubMed and Embase were searched for original MR studies on vitamin D in relation to any health outcome from inception to September 1, 2022. Nonlinear MR findings were excluded due to concerns about the validity of the statistical methods used. A meta-analysis was preformed to synthesize study-specific estimates after excluding overlapping samples, where applicable. The methodological quality of the included studies was evaluated according to the STROBE-MR checklist. A total of 133 MR publications were eligible for inclusion in the analyses. The causal association between vitamin D status and 275 individual outcomes was examined. Linear MR analyses showed genetically high 25-hydroxyvitamin D (25(OH)D) concentrations were associated with reduced risk of multiple sclerosis incidence and relapse, non-infectious uveitis and scleritis, psoriasis, femur fracture, leg fracture, amyotrophic lateral sclerosis, anorexia nervosa, delirium, heart failure, ovarian cancer, non-alcoholic fatty liver disease, dyslipidemia, and bacterial pneumonia, but increased risk of Behçet's disease, Graves' disease, kidney stone disease, fracture of radium/ulna, basal cell carcinoma, and overall cataracts. Stratified analyses showed that the inverse association between genetically predisposed 25(OH)D concentrations and multiple sclerosis risk was significant and consistent regardless of the genetic instruments GIs selected. However, the associations with most of the other outcomes were only pronounced when using genetic variants not limited to those in the vitamin D pathway as GIs. The methodological quality of the included MR studies was substantially heterogeneous. Current evidence from linear MR studies strongly supports a causal role of vitamin D in the development of multiple sclerosis. Suggestive support for a number of other health conditions could help prioritize conditions where vitamin D may be beneficial or harmful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data reported in this manuscript have been previously published. Data collection form, data extracted from included studies, and data used for all analyses are available in the supplementary material.

Abbreviations

25(OH)D:

25-Hydroxyvitamin D

1,25(OH)2D:

1,25-Dihydroxyvitamin D

ALS:

Amyotrophic lateral sclerosis

BCC:

Basal cell carcinoma

CAD:

Coronary artery disease

CHD:

Coronary heart disease

CI:

Confidence interval

CVD:

Cardiovascular disease

FIND:

Finnish vitamin D trial

GI:

Genetic instrument

GWAS:

Genome-wide association study

HF:

Heart failure

HR:

Hazard ratio

IV:

Instrumental variable

KSD:

Kidney stone disease

MI:

Myocardial infarction

MR:

Mendelian randomization

MS:

Multiple sclerosis

NAFLD:

Nonalcoholic fatty liver disease

OR:

Odds ratio

RCT:

Randomized controlled trial

SD:

Standard deviation

SE:

Standard error

SNP:

Single nucleotide polymorphisms

T2D:

Type 2 diabetes

UKB:

UK biobank

VDR:

Vitamin D receptor

ViDA:

Vitamin D assessment study

VITAL:

Vitamin D and omega-3 trial

References

  1. Holick MF. Vitamin D and bone health. J Nutr. 1996;126(4 Suppl):1159s-s1164. https://doi.org/10.1093/jn/126.suppl_4.1159S.

    Article  CAS  PubMed  Google Scholar 

  2. Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57. https://doi.org/10.1038/nrc3691.

    Article  CAS  PubMed  Google Scholar 

  3. Dimitrov V, Salehi-Tabar R, An BS, White JH. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention. J Steroid Biochem Mol Biol. 2014;144(Pt A):74–80. https://doi.org/10.1016/j.jsbmb.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  4. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26–34. https://doi.org/10.1210/jc.2008-1454.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–33. https://doi.org/10.1016/j.abb.2012.04.001.

    Article  CAS  PubMed  Google Scholar 

  6. Hewison M, Burke F, Evans KN, et al. Extra-renal 25-hydroxyvitamin D3–1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol. 2007;103(3–5):316–21. https://doi.org/10.1016/j.jsbmb.2006.12.078.

    Article  CAS  PubMed  Google Scholar 

  7. Kahwati LC, LeBlanc E, Weber RP, et al. Screening for vitamin D deficiency in adults: updated evidence report and systematic review for the US preventive services task force. JAMA. 2021;325(14):1443–63. https://doi.org/10.1001/jama.2020.26498.

    Article  PubMed  Google Scholar 

  8. Bouillon R, Marcocci C, Carmeliet G, et al. Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev. 2019;40(4):1109–51. https://doi.org/10.1210/er.2018-00126.

    Article  PubMed  Google Scholar 

  9. Liu D, Meng X, Tian Q, et al. Vitamin D and multiple health outcomes: an umbrella review of observational studies, randomized controlled trials, and mendelian randomization studies. Adv Nutr. 2022;13(4):1044–62. https://doi.org/10.1093/advances/nmab142.

    Article  CAS  PubMed  Google Scholar 

  10. Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB. The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol. 2022;18(2):96–110. https://doi.org/10.1038/s41574-021-00593-z.

    Article  CAS  PubMed  Google Scholar 

  11. Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415. https://doi.org/10.1210/jc.2015-2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization. Nat Rev Methods Prim. 2022;2(1):6. https://doi.org/10.1038/s43586-021-00092-5.

    Article  CAS  Google Scholar 

  13. Wade KH, Yarmolinsky J, Giovannucci E, et al. Applying Mendelian randomization to appraise causality in relationships between nutrition and cancer. Cancer Causes Control. 2022;33(5):631–52. https://doi.org/10.1007/s10552-022-01562-1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sallinen RJ, Dethlefsen O, Ruotsalainen S, et al. Genetic risk score for serum 25-hydroxyvitamin D concentration helps to guide personalized vitamin D supplementation in healthy finnish adults. J Nutr. 2021;151(2):281–92. https://doi.org/10.1093/jn/nxaa391.

    Article  CAS  PubMed  Google Scholar 

  15. Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8. https://doi.org/10.1016/s0140-6736(10)60588-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang X, O’Reilly PF, Aschard H, et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun. 2018;9(1):260. https://doi.org/10.1038/s41467-017-02662-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manousaki D, Mitchell R, Dudding T, et al. Genome-wide association study for vitamin D levels reveals 69 independent loci. Am J Hum Genet. 2020;106(3):327–37. https://doi.org/10.1016/j.ajhg.2020.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Revez JA, Lin T, Qiao Z, et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11(1):1647. https://doi.org/10.1038/s41467-020-15421-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng JS, Luan J, Sofianopoulou E, et al. The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: a meta-analysis and Mendelian randomisation analysis. PLoS Med. 2020;17(10): e1003394. https://doi.org/10.1371/journal.pmed.1003394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manousaki D, Dudding T, Haworth S, et al. Low-frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. Am J Hum Genet. 2017;101(2):227–38. https://doi.org/10.1016/j.ajhg.2017.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng X, Li X, Timofeeva MN, et al. Phenome-wide Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study. Int J Epidemiol. 2019;48(5):1425–34. https://doi.org/10.1093/ije/dyz182.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jiang X, Kiel DP, Kraft P. The genetics of vitamin D. Bone. 2019;126:59–77. https://doi.org/10.1016/j.bone.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  23. Butler-Laporte G, Richards JB. Mendelian randomisation and vitamin D: the importance of model assumptions. Lancet Diabetes Endocrinol. 2023;11(1):14–5. https://doi.org/10.1016/s2213-8587(22)00342-4.

    Article  CAS  PubMed  Google Scholar 

  24. Smith GD. Mendelian randomisation and vitamin D: the importance of model assumptions. Lancet Diabetes Endocrinol. 2023;11(1):14. https://doi.org/10.1016/s2213-8587(22)00345-x.

    Article  CAS  PubMed  Google Scholar 

  25. Burgess S. Violation of the constant genetic effect assumption can result in biased estimates for non-linear Mendelian randomization. Hum Hered. 2023. https://doi.org/10.1159/000531659.

    Article  PubMed  Google Scholar 

  26. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fang A, Zhao Y, Yang P, Zhang X, Giovannucci E. Health Effects of Vitamin D: Evidence from Mendelian Randomization studies. protocols.io, protocols.io. 2022. https://doi.org/10.17504/protocols.io.eq2ly7nzmlx9/v1. Accessed October 17, 2022.

  28. Trummer O, Langsenlehner U, Krenn-Pilko S, et al. Vitamin D and prostate cancer prognosis: a Mendelian randomization study. World J Urol. 2016;34(4):607–11. https://doi.org/10.1007/s00345-015-1646-9.

    Article  CAS  PubMed  Google Scholar 

  29. Kueider AM, Tanaka T, An Y, et al. State- and trait-dependent associations of vitamin-D with brain function during aging. Neurobiol Aging. 2016;39:38–45. https://doi.org/10.1016/j.neurobiolaging.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  30. Leong A, Rehman W, Dastani Z, et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study. PLoS Med. 2014;11(10): e1001751. https://doi.org/10.1371/journal.pmed.1001751.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang H, Wang T, Han Z, et al. Impact of vitamin D binding protein levels on Alzheimer’s disease: a Mendelian randomization study. J Alzheimers Dis. 2020;74(3):991–8. https://doi.org/10.3233/JAD-191051.

    Article  CAS  PubMed  Google Scholar 

  32. Burgess S, Wood AM, Butterworth AS. Mendelian randomisation and vitamin D: the importance of model assumptions - Authors’ reply. Lancet Diabetes Endocrinol. 2023;11(1):15–6. https://doi.org/10.1016/s2213-8587(22)00344-8.

    Article  CAS  PubMed  Google Scholar 

  33. Boef AG, Dekkers OM, le Cessie S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol. 2015;44(2):496–511. https://doi.org/10.1093/ije/dyv071.

    Article  PubMed  Google Scholar 

  34. Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA. 2021;326(16):1614–21. https://doi.org/10.1001/jama.2021.18236.

    Article  PubMed  Google Scholar 

  35. Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375: n2233. https://doi.org/10.1136/bmj.n2233.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ong JS, Dixon-Suen SC, Han X, et al. A comprehensive re-assessment of the association between vitamin D and cancer susceptibility using Mendelian randomization. Nat Commun. 2021;12(1):246. https://doi.org/10.1038/s41467-020-20368-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG. Vitamin D concentration, obesity, and risk of diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2(4):298–306. https://doi.org/10.1016/S2213-8587(13)70200-6.

    Article  CAS  PubMed  Google Scholar 

  38. Jorde R, Schirmer H, Wilsgaard T, et al. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromsø Study. PLoS ONE. 2012;7(5): e37295. https://doi.org/10.1371/journal.pone.0037295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Theodoratou E, Palmer T, Zgaga L, et al. Instrumental variable estimation of the causal effect of plasma 25-hydroxy-vitamin D on colorectal cancer risk: a mendelian randomization analysis. PLoS ONE. 2012;7(6): e37662. https://doi.org/10.1371/journal.pone.0037662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trummer O, Pilz S, Hoffmann MM, et al. Vitamin D and mortality: a Mendelian randomization study. Clin Chem. 2013;59(5):793–7. https://doi.org/10.1373/clinchem.2012.193185.

    Article  CAS  PubMed  Google Scholar 

  41. Skaaby T, Husemoen LL, Martinussen T, et al. Vitamin D status, filaggrin genotype, and cardiovascular risk factors: a Mendelian randomization approach. PLoS ONE. 2013;8(2): e57647. https://doi.org/10.1371/journal.pone.0057647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buijsse B, Boeing H, Hirche F, et al. Plasma 25-hydroxyvitamin D and its genetic determinants in relation to incident type 2 diabetes: a prospective case-cohort study. Eur J Epidemiol. 2013;28(9):743–52. https://doi.org/10.1007/s10654-013-9844-5.

    Article  CAS  PubMed  Google Scholar 

  43. Vimaleswaran KS, Cavadino A, Berry DJ, et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2(9):719–29. https://doi.org/10.1016/S2213-8587(14)70113-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2015;3(1):35–42. https://doi.org/10.1016/S2213-8587(14)70184-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ. 2014;349: g6330. https://doi.org/10.1136/bmj.g6330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brondum-Jacobsen P, Benn M, Afzal S, Nordestgaard BG. No evidence that genetically reduced 25-hydroxyvitamin D is associated with increased risk of ischaemic heart disease or myocardial infarction: a Mendelian randomization study. Int J Epidemiol. 2015;44(2):651–61. https://doi.org/10.1093/ije/dyv078.

    Article  PubMed  Google Scholar 

  47. Mokry LE, Ross S, Ahmad OS, et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 2015;12(8): e1001866. https://doi.org/10.1371/journal.pmed.1001866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dudding T, Thomas SJ, Duncan K, Lawlor DA, Timpson NJ. Re-examining the association between vitamin D and childhood caries. PLoS ONE. 2015;10(12): e0143769. https://doi.org/10.1371/journal.pone.0143769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taylor AE, Burgess S, Ware JJ, et al. Investigating causality in the association between 25(OH)D and schizophrenia. Sci Rep. 2016;6:26496. https://doi.org/10.1038/srep26496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manousaki D, Mokry LE, Ross S, Goltzman D, Richards JB. Mendelian randomization studies do not support a role for vitamin D in coronary artery disease. Circ Cardiovasc Genet. 2016;9(4):349–56. https://doi.org/10.1161/CIRCGENETICS.116.001396.

    Article  CAS  PubMed  Google Scholar 

  51. Hysinger EB, Roizen JD, Mentch FD, et al. Mendelian randomization analysis demonstrates that low vitamin D is unlikely causative for pediatric asthma. J Allergy Clin Immunol. 2016;138(6):1747-9e4. https://doi.org/10.1016/j.jaci.2016.06.056.

    Article  Google Scholar 

  52. Ong JS, Cuellar-Partida G, Lu Y, et al. Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. Int J Epidemiol. 2016;45(5):1619–30. https://doi.org/10.1093/ije/dyw207.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rhead B, Baarnhielm M, Gianfrancesco M, et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol Genet. 2016;2(5): e97. https://doi.org/10.1212/NXG.0000000000000097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ordóñez-Mena JM, Maalmi H, Schöttker B, et al. Genetic variants in the vitamin D pathway, 25(OH)D levels, and mortality in a large population-based Cohort study. J Clin Endocrinol Metab. 2017;102(2):470–7. https://doi.org/10.1210/jc.2016-2468.

    Article  PubMed  Google Scholar 

  55. Mokry LE, Ross S, Morris JA, Manousaki D, Forgetta V, Richards JB. Genetically decreased vitamin D and risk of Alzheimer disease. Neurology. 2016;87(24):2567–74. https://doi.org/10.1212/WNL.0000000000003430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gianfrancesco MA, Stridh P, Rhead B, et al. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology. 2017;88(17):1623–9. https://doi.org/10.1212/WNL.0000000000003849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Manousaki D, Paternoster L, Standl M, et al. Vitamin D levels and susceptibility to asthma, elevated immunoglobulin E levels, and atopic dermatitis: a Mendelian randomization study. PLoS Med. 2017;14(5): e1002294. https://doi.org/10.1371/journal.pmed.1002294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Larsson SC, Singleton AB, Nalls MA, Richards JB, International Parkinson’s Disease Genomics C. No clear support for a role for vitamin D in Parkinson’s disease: a Mendelian randomization study. Mov Disord. 2017;32(8):1249–52. https://doi.org/10.1002/mds.27069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mao Y, Zhan Y, Huang Y. Vitamin D and asthma: A Mendelian randomization study. Ann Allergy Asthma Immunol. 2017;119(1):95-7e1. https://doi.org/10.1016/j.anai.2017.05.018.

    Article  Google Scholar 

  60. Wang S, Huo D, Kupfer S, et al. Genetic variation in the vitamin D related pathway and breast cancer risk in women of African ancestry in the root consortium. Int J Cancer. 2018;142(1):36–43. https://doi.org/10.1002/ijc.31038.

    Article  CAS  PubMed  Google Scholar 

  61. Dimitrakopoulou VI, Tsilidis KK, Haycock PC, et al. Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study. BMJ. 2017;359: j4761. https://doi.org/10.1136/bmj.j4761.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Winslow UC, Nordestgaard BG, Afzal S. High plasma 25-hydroxyvitamin D and high risk of nonmelanoma skin cancer: a Mendelian randomization study of 97 849 individuals. Br J Dermatol. 2018;178(6):1388–95. https://doi.org/10.1111/bjd.16127.

    Article  CAS  PubMed  Google Scholar 

  63. Larsson SC, Traylor M, Malik R, et al. Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ. 2017;359: j5375. https://doi.org/10.1136/bmj.j5375.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chandler PD, Tobias DK, Wang L, et al. Association between vitamin D genetic risk score and cancer risk in a large cohort of US women. Nutrients. 2018. https://doi.org/10.3390/nu10010055.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang N, Chen C, Zhao L, et al. Vitamin D and nonalcoholic fatty liver disease: bi-directional mendelian randomization analysis. EBioMedicine. 2018;28:187–93. https://doi.org/10.1016/j.ebiom.2017.12.027.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Takahashi H, Cornish AJ, Sud A, et al. Mendelian randomisation study of the relationship between vitamin D and risk of glioma. Sci Rep. 2018;8(1):2339. https://doi.org/10.1038/s41598-018-20844-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dudding T, Johansson M, Thomas SJ, Brennan P, Martin RM, Timpson NJ. Assessing the causal association between 25-hydroxyvitamin D and the risk of oral and oropharyngeal cancer using Mendelian randomization. Int J Cancer. 2018;143(5):1029–36. https://doi.org/10.1002/ijc.31377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu L, Bennett DA, Millwood IY, et al. Association of vitamin D with risk of type 2 diabetes: a Mendelian randomisation study in European and Chinese adults. PLoS Med. 2018;15(5): e1002566. https://doi.org/10.1371/journal.pmed.1002566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun YQ, Brumpton BM, Bonilla C, et al. Serum 25-hydroxyvitamin D levels and risk of lung cancer and histologic types: a Mendelian randomisation analysis of the HUNT study. Eur Respir J. 2018. https://doi.org/10.1183/13993003.00329-2018.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bae SC, Lee YH. Vitamin D level and risk of systemic lupus erythematosus and rheumatoid arthritis: a Mendelian randomization. Clin Rheumatol. 2018;37(9):2415–21. https://doi.org/10.1007/s10067-018-4152-9.

    Article  PubMed  Google Scholar 

  71. Magnus MC, Miliku K, Bauer A, et al. Vitamin D and risk of pregnancy related hypertensive disorders: Mendelian randomisation study. BMJ. 2018;361: k2167. https://doi.org/10.1136/bmj.k2167.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lund-Nielsen J, Vedel-Krogh S, Kobylecki CJ, Brynskov J, Afzal S, Nordestgaard BG. Vitamin D and inflammatory bowel disease: mendelian randomization analyses in the copenhagen studies and UK Biobank. J Clin Endocrinol Metab. 2018;103(9):3267–77. https://doi.org/10.1210/jc.2018-00250.

    Article  PubMed  Google Scholar 

  73. He Y, Timofeeva M, Farrington SM, et al. Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study. BMC Med. 2018;16(1):142. https://doi.org/10.1186/s12916-018-1119-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trajanoska K, Morris JA, Oei L, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018;362: k3225. https://doi.org/10.1136/bmj.k3225.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Larsson SC, Traylor M, Markus HS, Michaelsson K. Serum parathyroid hormone, 25-hydroxyvitamin D, and risk of Alzheimer’s disease: a Mendelian randomization study. Nutrients. 2018. https://doi.org/10.3390/nu10091243.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Larsson SC, Traylor M, Mishra A, et al. Serum 25-hydroxyvitamin D concentrations and ischemic stroke and its subtypes. Stroke. 2018;49(10):2508–11. https://doi.org/10.1161/STROKEAHA.118.022242.

    Article  CAS  PubMed  Google Scholar 

  77. Ong JS, Gharahkhani P, An J, et al. Vitamin D and overall cancer risk and cancer mortality: a Mendelian randomization study. Hum Mol Genet. 2018;27(24):4315–22. https://doi.org/10.1093/hmg/ddy307.

    Article  CAS  PubMed  Google Scholar 

  78. Michaelsson K, Melhus H, Larsson SC. Serum 25-hydroxyvitamin D concentrations and major depression: a Mendelian randomization study. Nutrients. 2018. https://doi.org/10.3390/nu10121987.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jiang X, Dimou NL, Al-Dabhani K, et al. Circulating vitamin D concentrations and risk of breast and prostate cancer: a Mendelian randomization study. Int J Epidemiol. 2019;48(5):1416–24. https://doi.org/10.1093/ije/dyy284.

    Article  PubMed  Google Scholar 

  80. Aspelund T, Grubler MR, Smith AV, et al. Effect of genetically low 25-hydroxyvitamin d on mortality risk: Mendelian randomization analysis in 3 large European Cohorts. Nutrients. 2019. https://doi.org/10.3390/nu11010074.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dong J, Gharahkhani P, Chow WH, et al. No association between vitamin D status and risk of Barrett’s Esophagus or Esophageal adenocarcinoma: A Mendelian randomization study. Clin Gastroenterol Hepatol. 2019;17(11):2227–35. https://doi.org/10.1016/j.cgh.2019.01.041.

    Article  CAS  Google Scholar 

  82. Bowman K, Jones L, Pilling LC, et al. Vitamin D levels and risk of delirium: a mendelian randomization study in the UK Biobank. Neurology. 2019;92(12):e1387–94. https://doi.org/10.1212/WNL.0000000000007136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Havdahl A, Mitchell R, Paternoster L, Davey SG. Investigating causality in the association between vitamin D status and self-reported tiredness. Sci Rep. 2019;9(1):2880. https://doi.org/10.1038/s41598-019-39359-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang N, Wang C, Chen X, et al. Vitamin D, prediabetes and type 2 diabetes: bidirectional Mendelian randomization analysis. Eur J Nutr. 2020;59(4):1379–88. https://doi.org/10.1007/s00394-019-01990-x.

    Article  CAS  PubMed  Google Scholar 

  85. Libuda L, Laabs BH, Ludwig C, et al. Vitamin D and the risk of depression: a causal relationship? Findings from a Mendelian randomization study. Nutrients. 2019. https://doi.org/10.3390/nu11051085.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liyanage UE, Law MH, Melanoma Meta-analysis C, Barrett JH, Iles MM, MacGregor S. Is there a causal relationship between vitamin D and melanoma risk? A Mendelian randomization study. Br J Dermatol. 2020;182(1):97–103. https://doi.org/10.1111/bjd.18238.

    Article  CAS  PubMed  Google Scholar 

  87. Yarmolinsky J, Relton CL, Lophatananon A, et al. Appraising the role of previously reported risk factors in epithelial ovarian cancer risk: A Mendelian randomization analysis. PLoS Med. 2019;16(8): e1002893. https://doi.org/10.1371/journal.pmed.1002893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang T, Afzal S, Yu C, et al. Vitamin D and cause-specific vascular disease and mortality: a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults. BMC Med. 2019;17(1):160. https://doi.org/10.1186/s12916-019-1401-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Milaneschi Y, Peyrot WJ, Nivard MG, Mbarek H, Boomsma DI, WJH Penninx B. A role for vitamin D and omega-3 fatty acids in major depression? An exploration using genomics. Transl Psychiatry. 2019;9(1):219. https://doi.org/10.1038/s41398-019-0554-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yuan S, Jiang X, Michaelsson K, Larsson SC. Genetic prediction of serum 25-hydroxyvitamin D, calcium, and parathyroid hormone levels in relation to development of type 2 diabetes: a Mendelian randomization study. Diabetes Care. 2019;42(12):2197–203. https://doi.org/10.2337/dc19-1247.

    Article  CAS  PubMed  Google Scholar 

  91. Chen C, Chen Y, Weng P, et al. Association of 25-hydroxyvitamin D with cardiometabolic risk factors and metabolic syndrome: a mendelian randomization study. Nutr J. 2019;18(1):61. https://doi.org/10.1186/s12937-019-0494-7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Saunders CN, Cornish AJ, Kinnersley B, et al. Lack of association between modifiable exposures and glioma risk: a Mendelian randomization analysis. Neuro Oncol. 2020;22(2):207–15. https://doi.org/10.1093/neuonc/noz209.

    Article  CAS  PubMed  Google Scholar 

  93. Cornish AJ, Law PJ, Timofeeva M, et al. Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. Lancet Gastroenterol Hepatol. 2020;5(1):55–62. https://doi.org/10.1016/S2468-1253(19)30294-8.

    Article  PubMed  Google Scholar 

  94. Kazmi N, Haycock P, Tsilidis K, et al. Appraising causal relationships of dietary, nutritional and physical-activity exposures with overall and aggressive prostate cancer: two-sample Mendelian-randomization study based on 79 148 prostate-cancer cases and 61 106 controls. Int J Epidemiol. 2020;49(2):587–96. https://doi.org/10.1093/ije/dyz235.

    Article  PubMed  Google Scholar 

  95. Kwak SY, Cho Y, Oh H, Shin MJ. Association of circulating 25-hydroxyvitamin D levels with hypertension and blood pressure values in Korean adults: a Mendelian randomization study on a subset of the Korea National Health and Nutrition Survey 2011–2012 population. Nutr Res Pract. 2019;13(6):498–508. https://doi.org/10.4162/nrp.2019.13.6.498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jacobs BM, Noyce AJ, Giovannoni G, Dobson R. BMI and low vitamin D are causal factors for multiple sclerosis: a Mendelian Randomization study. Neurol Neuroimmunol Neuroinflamm. 2020. https://doi.org/10.1212/NXI.0000000000000662.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lu Y, Gentiluomo M, Lorenzo-Bermejo J, et al. Mendelian randomisation study of the effects of known and putative risk factors on pancreatic cancer. J Med Genet. 2020;57(12):820–8. https://doi.org/10.1136/jmedgenet-2019-106200.

    Article  PubMed  Google Scholar 

  98. Went M, Cornish AJ, Law PJ, et al. Search for multiple myeloma risk factors using Mendelian randomization. Blood Adv. 2020;4(10):2172–9. https://doi.org/10.1182/bloodadvances.2020001502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Howell AE, Robinson JW, Wootton RE, et al. Testing for causality between systematically identified risk factors and glioma: a Mendelian randomization study. BMC Cancer. 2020;20(1):508. https://doi.org/10.1186/s12885-020-06967-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheng WW, Wang ZK, Shangguan HF, Zhu Q, Zhang HY. Are vitamins relevant to cancer risks? A Mendelian randomization investigation. Nutrition. 2020;78: 110870. https://doi.org/10.1016/j.nut.2020.110870.

    Article  CAS  PubMed  Google Scholar 

  101. Yuan S, Xiong Y, Larsson SC. An atlas on risk factors for multiple sclerosis: a Mendelian randomization study. J Neurol. 2021;268(1):114–24. https://doi.org/10.1007/s00415-020-10119-8.

    Article  CAS  PubMed  Google Scholar 

  102. Ye Y, Yang H, Wang Y, Zhao H. A comprehensive genetic and epidemiological association analysis of vitamin D with common diseases/traits in the UK Biobank. Genet Epidemiol. 2021;45(1):24–35. https://doi.org/10.1002/gepi.22357.

    Article  PubMed  Google Scholar 

  103. Mulugeta A, Lumsden A, Hypponen E. Relationship between serum 25(OH)D and depression: causal evidence from a bi-directional mendelian randomization study. Nutrients. 2020;13(1):1–15. https://doi.org/10.3390/nu13010109.

    Article  CAS  Google Scholar 

  104. Jiang X, Ge T, Chen CY. The causal role of circulating vitamin D concentrations in human complex traits and diseases: a large-scale Mendelian randomization study. Sci Rep. 2021;11(1):184. https://doi.org/10.1038/s41598-020-80655-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Harroud A, Manousaki D, Butler-Laporte G, et al. The relative contributions of obesity, vitamin D, leptin, and adiponectin to multiple sclerosis risk: a Mendelian randomization mediation analysis. Mult Scler. 2021;27(13):1994–2000. https://doi.org/10.1177/1352458521995484.

    Article  CAS  PubMed  Google Scholar 

  106. Manousaki D, Harroud A, Mitchell RE, et al. Vitamin D levels and risk of type 1 diabetes: a Mendelian randomization study. PLoS Med. 2021;18(2): e1003536. https://doi.org/10.1371/journal.pmed.1003536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Butler-Laporte G, Nakanishi T, Mooser V, et al. Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: a Mendelian randomization study. PLoS Med. 2021;18(6): e1003605. https://doi.org/10.1371/journal.pmed.1003605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–7. https://doi.org/10.1038/s41586-021-03767-x.

    Article  CAS  Google Scholar 

  109. Cui Z, Tian Y. Using genetic variants to evaluate the causal effect of serum vitamin D concentration on COVID-19 susceptibility, severity and hospitalization traits: a Mendelian randomization study. J Transl Med. 2021;19(1):300. https://doi.org/10.1186/s12967-021-02973-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Amin HA, Drenos F. No evidence that vitamin D is able to prevent or affect the severity of COVID-19 in individuals with European ancestry: a Mendelian randomisation study of open data. BMJ Nutr Prev Health. 2021;4(1):42–8. https://doi.org/10.1136/bmjnph-2020-000151.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Patchen BK, Clark AG, Gaddis N, Hancock DB, Cassano PA. Genetically predicted serum vitamin D and COVID-19: a Mendelian randomisation study. BMJ Nutr Prev Health. 2021;4(1):213–25. https://doi.org/10.1136/bmjnph-2021-000255.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li X, van Geffen J, van Weele M, et al. An observational and Mendelian randomisation study on vitamin D and COVID-19 risk in UK Biobank. Sci Rep. 2021;11(1):18262. https://doi.org/10.1038/s41598-021-97679-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu D, Tian QY, Zhang J, et al. Association between 25 hydroxyvitamin D concentrations and the Risk of COVID-19: a Mendelian randomization study. Biomed Environ Sci. 2021;34(9):750–4. https://doi.org/10.3967/bes2021.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang R. Mendelian randomization study updates the effect of 25-hydroxyvitamin D levels on the risk of multiple sclerosis. J Transl Med. 2022;20(1):3. https://doi.org/10.1186/s12967-021-03205-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vandebergh M, Dubois B, Goris A. Effects of vitamin D and body mass index on disease risk and relapse hazard in multiple sclerosis: a Mendelian randomization study. Neurol Neuroimmunol Neuroinflamm. 2022. https://doi.org/10.1212/NXI.0000000000001165.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Olsson E, Byberg L, Karlstrom B, et al. Vitamin D is not associated with incident dementia or cognitive impairment: an 18-y follow-up study in community-living old men. Am J Clin Nutr. 2017;105(4):936–43. https://doi.org/10.3945/ajcn.116.141531.

    Article  CAS  PubMed  Google Scholar 

  117. Jorde R, Wilsgaard T, Grimnes G. Polymorphisms in the vitamin D system and mortality - The Tromso study. J Steroid Biochem Mol Biol. 2019;195: 105481. https://doi.org/10.1016/j.jsbmb.2019.105481.

    Article  CAS  PubMed  Google Scholar 

  118. Larsson SC, Roos PM. Serum 25-hydroxyvitamin D in amyotrophic lateral sclerosis: mendelian randomization study. Neurobiol Aging. 2020;87(140):e1–3. https://doi.org/10.1016/j.neurobiolaging.2019.10.024.

    Article  CAS  Google Scholar 

  119. Wang L, Qiao Y, Zhang H, et al. Circulating vitamin D levels and Alzheimer’s disease: a Mendelian randomization study in the IGAP and UK Biobank. J Alzheimers Dis. 2020;73(2):609–18. https://doi.org/10.3233/JAD-190713.

    Article  PubMed  Google Scholar 

  120. Colak Y, Afzal S, Nordestgaard BG. 25-Hydroxyvitamin D and risk of osteoporotic fractures: Mendelian randomization analysis in 2 large population-based cohorts. Clin Chem. 2020;66(5):676–85. https://doi.org/10.1093/clinchem/hvaa049.

    Article  PubMed  Google Scholar 

  121. Zhong Z, Su G, Du L, et al. Higher 25-hydroxyvitamin D level is associated with increased risk for Behcet’s disease. Clin Nutr. 2021;40(2):518–24. https://doi.org/10.1016/j.clnu.2020.05.049.

    Article  CAS  PubMed  Google Scholar 

  122. Feng Q, Bonnelykke K, Ek WE, et al. Null association between serum 25-hydroxyvitamin D levels with allergic rhinitis, allergic sensitization and non-allergic rhinitis: a Mendelian randomization study. Clin Exp Allergy. 2021;51(1):78–86. https://doi.org/10.1111/cea.13739.

    Article  CAS  PubMed  Google Scholar 

  123. Pilling LC, Jones LC, Masoli JAH, et al. Low vitamin D levels and risk of incident delirium in 351,000 Older UK Biobank participants. J Am Geriatr Soc. 2021;69(2):365–72. https://doi.org/10.1111/jgs.16853.

    Article  PubMed  Google Scholar 

  124. Colak Y, Nordestgaard BG, Afzal S. Low vitamin D and risk of bacterial pneumonias: Mendelian randomisation studies in two population-based cohorts. Thorax. 2021;76(5):468–78. https://doi.org/10.1136/thoraxjnl-2020-215288.

    Article  PubMed  Google Scholar 

  125. Zanetti D, Gustafsson S, Assimes TL, Ingelsson E. Comprehensive investigation of circulating biomarkers and their causal role in atherosclerosis-related risk factors and clinical events. Circ Genom Precis Med. 2020;13(6): e002996. https://doi.org/10.1161/CIRCGEN.120.002996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu H, Jiang X, Qiao Q, et al. Association of circulating 25-Hydroxyvitamin D and its related genetic variations with hepatocellular carcinoma incidence and survival. Ann Transl Med. 2020;8(17):1080. https://doi.org/10.21037/atm-20-1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Libuda L, Naaresh R, Ludwig C, et al. A mendelian randomization study on causal effects of 25(OH)vitamin D levels on attention deficit/hyperactivity disorder. Eur J Nutr. 2021;60(5):2581–91. https://doi.org/10.1007/s00394-020-02439-2.

    Article  CAS  PubMed  Google Scholar 

  128. Xu Y, Zhou Y, Liu J, et al. Genetically increased circulating 25(OH)D level reduces the risk of type 2 diabetes in subjects with deficiency of vitamin D: a large-scale Mendelian randomization study. Medicine. 2020;99(51): e23672. https://doi.org/10.1097/MD.0000000000023672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bergink AP, Trajanoska K, Uitterlinden AG, van Meurs JBJ. Mendelian randomization study on vitamin D levels and osteoarthritis risk: a concise report. Rheumatology. 2021;60(7):3409–12. https://doi.org/10.1093/rheumatology/keaa697.

    Article  CAS  PubMed  Google Scholar 

  130. Yuan S, Tomson T, Larsson SC. Modifiable risk factors for epilepsy: a two-sample Mendelian randomization study. Brain Behav. 2021;11(5): e02098. https://doi.org/10.1002/brb3.2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Qu Z, Yang F, Yan Y, et al. A Mendelian randomization study on the role of serum parathyroid hormone and 25-hydroxyvitamin D in osteoarthritis. Osteoarthr Cartil. 2021;29(9):1282–90. https://doi.org/10.1016/j.joca.2021.04.015.

    Article  CAS  Google Scholar 

  132. Du M, Garcia JGN, Christie JD, et al. Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med. 2021;47(7):761–71. https://doi.org/10.1007/s00134-021-06410-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xiao J, Lv J, Wang S, et al. Association of serum 25-hydroxyvitamin D with metabolic syndrome and type 2 diabetes: a one sample Mendelian randomization study. BMC Geriatr. 2021;21(1):391. https://doi.org/10.1186/s12877-021-02307-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bejar CA, Goyal S, Afzal S, et al. A Bidirectional Mendelian Randomization Study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans. Nutr J. 2021;20(1):71. https://doi.org/10.1186/s12937-021-00725-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dodhia SA, West NX, Thomas SJ, et al. Examining the causal association between 25-hydroxyvitamin D and caries in children and adults: a two-sample Mendelian randomization approach. Wellcome Open Res. 2020;5:281. https://doi.org/10.12688/wellcomeopenres.16369.2.

    Article  PubMed  Google Scholar 

  136. He Y, Zhang X, Timofeeva M, et al. Bidirectional Mendelian randomisation analysis of the relationship between circulating vitamin D concentration and colorectal cancer risk. Int J Cancer. 2022;150(2):303–7. https://doi.org/10.1002/ijc.33779.

    Article  CAS  PubMed  Google Scholar 

  137. Jiang J, Shao M, Wu X. Vitamin D and risk of ankylosing spondylitis: a two-sample mendelian randomization study. Hum Immunol. 2022;83(1):81–5. https://doi.org/10.1016/j.humimm.2021.09.003.

    Article  CAS  PubMed  Google Scholar 

  138. Chan YH, Schooling CM, Zhao J, et al. Mendelian randomization focused analysis of vitamin D on the secondary prevention of ischemic stroke. Stroke. 2021;52(12):3926–37. https://doi.org/10.1161/STROKEAHA.120.032634.

    Article  CAS  PubMed  Google Scholar 

  139. Chen S, Yang F, Xu T, et al. The impact of serum 25-hydroxyvitamin D, calcium, and parathyroid hormone levels on the risk of coronary artery disease in patients with diabetes: a Mendelian randomization study. Nutr J. 2021;20(1):82. https://doi.org/10.1186/s12937-021-00735-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuan S, Baron JA, Michaelsson K, Larsson SC. Serum calcium and 25-hydroxyvitamin D in relation to longevity, cardiovascular disease and cancer: a Mendelian randomization study. NPJ Genom Med. 2021;6(1):86. https://doi.org/10.1038/s41525-021-00250-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yuan S, Bruzelius M, Damrauer SM, Larsson SC. Cardiometabolic, lifestyle, and nutritional factors in relation to varicose veins: a mendelian randomization study. J Am Heart Assoc. 2021;10(21): e022286. https://doi.org/10.1161/JAHA.121.022286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jian Z, Huang Y, He Y, et al. Genetically predicted lifelong circulating 25(OH)D levels are associated with serum calcium levels and kidney stone risk. J Clin Endocrinol Metab. 2022;107(3):e1159–66. https://doi.org/10.1210/clinem/dgab758.

    Article  PubMed  Google Scholar 

  143. Emerging Risk Factors Collaboration E-CVDVDSC. Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2021;9(12):837–46. https://doi.org/10.1016/S2213-8587(21)00263-1.

    Article  Google Scholar 

  144. Arathimos R, Ronaldson A, Howe LJ, et al. Vitamin D and the risk of treatment-resistant and atypical depression: a Mendelian randomization study. Transl Psychiatry. 2021;11(1):561. https://doi.org/10.1038/s41398-021-01674-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Clarke SL, Mitchell RE, Sharp GC, Ramanan AV, Relton CL. Vitamin D levels and risk of juvenile idiopathic arthritis: a Mendelian randomization study. Arthritis Care Res. 2021. https://doi.org/10.1002/acr.24815.

    Article  Google Scholar 

  146. Zhou A, Selvanayagam JB, Hypponen E. Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur Heart J. 2022;43(18):1731–9. https://doi.org/10.1093/eurheartj/ehab809.

    Article  CAS  PubMed  Google Scholar 

  147. Baumeister SE, Reckelkamm SL, Baurecht H, et al. A Mendelian randomization study on the effect of 25-hydroxyvitamin D levels on periodontitis. J Periodontol. 2022;93(8):1243–9. https://doi.org/10.1002/JPER.21-0463.

    Article  CAS  PubMed  Google Scholar 

  148. Song J, Liu K, Chen W, et al. Circulating vitamin D levels and risk of vitiligo: evidence from meta-analysis and two-sample mendelian randomization. Front Nutr. 2021;8: 782270. https://doi.org/10.3389/fnut.2021.782270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chan YH, Schooling CM, Zhao JV, et al. Mendelian randomization analysis of vitamin D in the secondary prevention of hypertensive-diabetic subjects: role of facilitating blood pressure control. Genes Nutr. 2022;17(1):1. https://doi.org/10.1186/s12263-022-00704-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yuan S, Larsson SC. Inverse association between serum 25-hydroxyvitamin D and nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2022. https://doi.org/10.1016/j.cgh.2022.01.021.

    Article  PubMed  Google Scholar 

  151. Hu Z, Zhou F, Xu H. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: a Mendelian randomization study. J Clin Periodontol. 2022;49(4):335–44. https://doi.org/10.1111/jcpe.13598.

    Article  CAS  PubMed  Google Scholar 

  152. Xia K, Wang Y, Zhang L, et al. Dietary-derived essential nutrients and amyotrophic lateral sclerosis: a two-sample mendelian randomization study. Nutrients. 2022. https://doi.org/10.3390/nu14050920.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yang S, Zhi H, Sun Y, Wang L. Circulating vitamin D levels and the risk of atrial fibrillation: a two-sample Mendelian randomization study. Front Nutr. 2022;9: 837207. https://doi.org/10.3389/fnut.2022.837207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Navale SS, Mulugeta A, Zhou A, Llewellyn DJ, Hypponen E. Vitamin D and brain health: an observational and Mendelian randomization study. Am J Clin Nutr. 2022;116(2):531–40. https://doi.org/10.1093/ajcn/nqac107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gu D, Tang M, Wang Y, et al. The causal relationships between extrinsic exposures and risk of prostate cancer: a phenome-wide Mendelian randomization study. Front Oncol. 2022;12: 829248. https://doi.org/10.3389/fonc.2022.829248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Huang N, Zhuang Z, Liu Z, Huang T. Observational and genetic associations of modifiable risk factors with aortic valve stenosis: a prospective cohort study of 0.5 million participants. Nutrients. 2022. https://doi.org/10.3390/nu14112273.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gao N, Li X, Kong M, et al. Associations between vitamin D levels and risk of heart failure: a bidirectional Mendelian randomization study. Front Nutr. 2022;9: 910949. https://doi.org/10.3389/fnut.2022.910949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Meng L, Wang Z, Ming YC, Shen L, Ji HF. Are micronutrient levels and supplements causally associated with the risk of Alzheimer’s disease? A two-sample Mendelian randomization analysis. Food Funct. 2022;13(12):6665–73. https://doi.org/10.1039/d1fo03574f.

    Article  CAS  PubMed  Google Scholar 

  159. Daniel N, Bouras E, Tsilidis KK, Hughes DJ. Genetically predicted circulating concentrations of micronutrients and COVID-19 susceptibility and severity: a mendelian randomization study. Front Nutr. 2022;9: 842315. https://doi.org/10.3389/fnut.2022.842315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Szejko N, Acosta JN, Both CP, et al. Genetically-proxied levels of vitamin D and risk of intracerebral hemorrhage. J Am Heart Assoc. 2022;11(13): e024141. https://doi.org/10.1161/jaha.121.024141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang N, Wang Y, Chen Z, et al. Circulating vitamin D concentrations and risk of atrial fibrillation: a mendelian randomization study using non-deficient range summary statistics. Front Nutr. 2022;9: 842392. https://doi.org/10.3389/fnut.2022.842392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sha T, Li W, He H, Wu J, Wang Y, Li H. Causal relationship of genetically predicted serum micronutrients levels with sarcopenia: a Mendelian randomization study. Front Nutr. 2022;9: 913155. https://doi.org/10.3389/fnut.2022.913155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Susarla G, Chan W, Li A, et al. Mendelian randomization shows a causal effect of low vitamin D on non-infectious uveitis and scleritis risk. Am J Ophthalmol. 2022;244:11–8. https://doi.org/10.1016/j.ajo.2022.08.001.

    Article  CAS  PubMed  Google Scholar 

  164. Zhang Y, Jing D, Zhou G, et al. Evidence of a causal relationship between vitamin D status and risk of psoriasis from the UK biobank study. Front Nutr. 2022;9: 807344. https://doi.org/10.3389/fnut.2022.807344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu H, Shen X, Yu T, et al. A putative causality of vitamin D in common diseases: a Mendelian randomization study. Front Nutr. 2022;9: 938356. https://doi.org/10.3389/fnut.2022.938356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mitchell RE, Hartley AE, Walker VM, et al. Strategies to investigate and mitigate collider bias in genetic and Mendelian randomisation studies of disease progression. PLoS Genet. 2023;19(2): e1010596. https://doi.org/10.1371/journal.pgen.1010596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li SS, Gao LH, Zhang XY, et al. Genetically low vitamin D levels, bone mineral density, and bone metabolism markers: a mendelian randomisation study. Sci Rep. 2016;6:33202. https://doi.org/10.1038/srep33202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Larsson SC, Melhus H, Michaelsson K. Circulating serum 25-hydroxyvitamin D levels and bone mineral density: Mendelian randomization study. J Bone Miner Res. 2018;33(5):840–4. https://doi.org/10.1002/jbmr.3389.

    Article  CAS  PubMed  Google Scholar 

  169. Sun JY, Zhao M, Hou Y, et al. Circulating serum vitamin D levels and total body bone mineral density: a Mendelian randomization study. J Cell Mol Med. 2019;23(3):2268–71. https://doi.org/10.1111/jcmm.14153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tang Y, Wei F, Yu M, et al. Absence of causal association between Vitamin D and bone mineral density across the lifespan: a Mendelian randomization study. Sci Rep. 2022;12(1):10408. https://doi.org/10.1038/s41598-022-14548-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chakhtoura M, Bacha DS, Gharios C, et al. Vitamin D supplementation and fractures in adults: a systematic umbrella review of meta-analyses of controlled trials. J Clin Endocrinol Metab. 2022;107(3):882–98. https://doi.org/10.1210/clinem/dgab742.

    Article  PubMed  Google Scholar 

  172. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018;6(11):847–58. https://doi.org/10.1016/s2213-8587(18)30265-1.

    Article  CAS  PubMed  Google Scholar 

  173. Yao P, Bennett D, Mafham M, et al. Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(12): e1917789. https://doi.org/10.1001/jamanetworkopen.2019.17789.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Khaw KT, Stewart AW, Waayer D, et al. Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomised, double-blind, placebo-controlled ViDA trial. Lancet Diabetes Endocrinol. 2017;5(6):438–47. https://doi.org/10.1016/S2213-8587(17)30103-1.

    Article  CAS  PubMed  Google Scholar 

  175. Bischoff-Ferrari HA, Vellas B, Rizzoli R, et al. Effect of vitamin D supplementation, omega-3 fatty acid supplementation, or a strength-training exercise program on clinical outcomes in older adults: the do-health randomized clinical trial. JAMA. 2020;324(18):1855–68. https://doi.org/10.1001/jama.2020.16909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. LeBoff MS, Chou SH, Ratliff KA, et al. Supplemental vitamin D and incident fractures in midlife and older adults. N Engl J Med. 2022;387(4):299–309. https://doi.org/10.1056/NEJMoa2202106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Murdaca G, Tonacci A, Negrini S, et al. Emerging role of vitamin D in autoimmune diseases: an update on evidence and therapeutic implications. Autoimmun Rev. 2019;18(9): 102350. https://doi.org/10.1016/j.autrev.2019.102350.

    Article  CAS  PubMed  Google Scholar 

  178. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8. https://doi.org/10.1001/jama.296.23.2832.

    Article  CAS  PubMed  Google Scholar 

  179. Simpson S Jr, Taylor B, Blizzard L, et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol. 2010;68(2):193–203. https://doi.org/10.1002/ana.22043.

    Article  CAS  PubMed  Google Scholar 

  180. Hahn J, Cook NR, Alexander EK, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376: e066452. https://doi.org/10.1136/bmj-2021-066452.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Jolliffe DA, Camargo CA Jr, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–92. https://doi.org/10.1016/s2213-8587(21)00051-6.

    Article  CAS  PubMed  Google Scholar 

  182. Kumar J, Kumar P, Goyal JP, et al. Vitamin D supplementation in childhood asthma: a systematic review and meta-analysis of randomised controlled trials. ERJ Open Res. 2022. https://doi.org/10.1183/23120541.00662-2021.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Du Y, Liang F, Zhang L, Liu J, Dou H. Vitamin D supplement for prevention of Alzheimer’s disease: a systematic review and meta-analysis. Am J Ther. 2020;28(6):e638–48. https://doi.org/10.1097/mjt.0000000000001302.

    Article  PubMed  Google Scholar 

  184. Barbarawi M, Kheiri B, Zayed Y, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83 000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. 2019;4(8):765–76. https://doi.org/10.1001/jamacardio.2019.1870.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44. https://doi.org/10.1056/NEJMoa1809944.

    Article  CAS  PubMed  Google Scholar 

  186. Scragg R, Stewart AW, Waayer D, et al. Effect of monthly high-dose vitamin d supplementation on cardiovascular disease in the vitamin D assessment study : a randomized clinical trial. JAMA Cardiol. 2017;2(6):608–16. https://doi.org/10.1001/jamacardio.2017.0175.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Virtanen JK, Nurmi T, Aro A, et al. Vitamin D supplementation and prevention of cardiovascular disease and cancer in the Finnish Vitamin D Trial: a randomized controlled trial. Am J Clin Nutr. 2022;115(5):1300–10. https://doi.org/10.1093/ajcn/nqab419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Djoussé L, Cook NR, Kim E, et al. Supplementation with vitamin D and omega-3 fatty acids and incidence of heart failure hospitalization: VITAL-heart failure. Circulation. 2020;141(9):784–6. https://doi.org/10.1161/circulationaha.119.044645.

    Article  PubMed  Google Scholar 

  189. Han J, Guo X, Yu X, et al. 25-hydroxyvitamin D and total cancer incidence and mortality: a meta-analysis of prospective cohort studies. Nutrients. 2019. https://doi.org/10.3390/nu11102295.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Henn M, Martin-Gorgojo V, Martin-Moreno JM. Vitamin D in cancer prevention: gaps in current knowledge and room for hope. Nutrients. 2022. https://doi.org/10.3390/nu14214512.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chandler PD, Chen WY, Ajala ON, et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open. 2020;3(11): e2025850. https://doi.org/10.1001/jamanetworkopen.2020.25850.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Scragg R, Khaw KT, Toop L, et al. Monthly high-dose vitamin D supplementation and cancer risk: a post hoc analysis of the vitamin D assessment randomized clinical trial. JAMA Oncol. 2018;4(11): e182178. https://doi.org/10.1001/jamaoncol.2018.2178.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann Oncol. 2019;30(5):733–43. https://doi.org/10.1093/annonc/mdz059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Guo Z, Huang M, Fan D, et al. Association between vitamin D supplementation and cancer incidence and mortality: a trial sequential meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2022. https://doi.org/10.1080/10408398.2022.2056574.

    Article  PubMed  Google Scholar 

  195. Emmanouilidou G, Kalopitas G, Bakaloudi DR, et al. Vitamin D as a chemopreventive agent in colorectal neoplasms. A systematic review and meta-analysis of randomized controlled trials. Pharmacol Ther. 2022;237:108252. https://doi.org/10.1016/j.pharmthera.2022.108252.

    Article  CAS  PubMed  Google Scholar 

  196. Ali S, Pham H, Waterhouse M, et al. The effect of vitamin D supplementation on risk of keratinocyte cancer: an exploratory analysis of the D-Health randomized controlled trial. Br J Dermatol. 2022;187(5):667–75. https://doi.org/10.1111/bjd.21742.

    Article  CAS  PubMed  Google Scholar 

  197. Passarelli MN, Karagas MR, Mott LA, Rees JR, Barry EL, Baron JA. Risk of keratinocyte carcinomas with vitamin D and calcium supplementation: a secondary analysis of a randomized clinical trial. Am J Clin Nutr. 2020;112(6):1532–9. https://doi.org/10.1093/ajcn/nqaa267.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sutherland JP, Zhou A, Hypponen E. Vitamin D deficiency increases mortality risk in the UK biobank : a nonlinear mendelian randomization study. Ann Intern Med. 2022;175(11):1552–9. https://doi.org/10.7326/M21-3324.

    Article  PubMed  Google Scholar 

  199. Neale RE, Baxter C, Romero BD, et al. The D-health trial: a randomised controlled trial of the effect of vitamin D on mortality. Lancet Diabetes Endocrinol. 2022;10(2):120–8. https://doi.org/10.1016/s2213-8587(21)00345-4.

    Article  CAS  PubMed  Google Scholar 

  200. Zhang Y, Fang F, Tang J, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ. 2019;366: l4673. https://doi.org/10.1136/bmj.l4673.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Chen QY, Kim S, Lee B, et al. Post-diagnosis vitamin D supplement use and survival among cancer patients: a meta-analysis. Nutrients. 2022. https://doi.org/10.3390/nu14163418.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Vaughan-Shaw PG, Buijs LF, Blackmur JP, et al. The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020;123(11):1705–12. https://doi.org/10.1038/s41416-020-01060-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cui X, Eyles DW. Vitamin D and the central nervous system: causative and preventative mechanisms in brain disorders. Nutrients. 2022;14(20):4353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Khoshbakht Y, Bidaki R, Salehi-Abargouei A. Vitamin D status and attention deficit hyperactivity disorder: a systematic review and meta-analysis of observational studies. Adv Nutr. 2018;9(1):9–20. https://doi.org/10.1093/advances/nmx002.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Li H, Sun D, Wang A, et al. Serum 25-hydroxyvitamin D levels and depression in older adults: a dose-response meta-analysis of prospective cohort studies. Am J Geriatr Psychiatry. 2019;27(11):1192–202. https://doi.org/10.1016/j.jagp.2019.05.022.

    Article  PubMed  Google Scholar 

  206. Chen H, Xue W, Li J, et al. 25-Hydroxyvitamin D levels and the risk of dementia and Alzheimer’s disease: a dose-response meta-analysis. Front Aging Neurosci. 2018;10:368. https://doi.org/10.3389/fnagi.2018.00368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhu JL, Luo WW, Cheng X, Li Y, Zhang QZ, Peng WX. Vitamin D deficiency and schizophrenia in adults: a systematic review and meta-analysis of observational studies. Psychiatry Res. 2020;288: 112959. https://doi.org/10.1016/j.psychres.2020.112959.

    Article  CAS  PubMed  Google Scholar 

  208. Juntas-Morales R, Pageot N, Marin G, et al. Low 25OH vitamin D blood levels are independently associated with higher amyotrophic lateral sclerosis severity scores: results from a prospective study. Front Neurol. 2020;11:363. https://doi.org/10.3389/fneur.2020.00363.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Miller JW, Harvey DJ, Beckett LA, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol. 2015;72(11):1295–303. https://doi.org/10.1001/jamaneurol.2015.2115.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kang JH, Vyas CM, Okereke OI, et al. Effect of vitamin D on cognitive decline: results from two ancillary studies of the VITAL randomized trial. Sci Rep. 2021;11(1):23253. https://doi.org/10.1038/s41598-021-02485-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schietzel S, Fischer K, Brugger P, et al. Effect of 2000 IU compared with 800 IU vitamin D on cognitive performance among adults age 60 years and older: a randomized controlled trial. Am J Clin Nutr. 2019;110(1):246–53. https://doi.org/10.1093/ajcn/nqz081.

    Article  PubMed  Google Scholar 

  212. Pittas AG, Dawson-Hughes B, Sheehan P, et al. Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med. 2019;381(6):520–30. https://doi.org/10.1056/NEJMoa1900906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jorde R, Sollid ST, Svartberg J, et al. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes. J Clin Endocrinol Metab. 2016;101(4):1647–55. https://doi.org/10.1210/jc.2015-4013.

    Article  CAS  PubMed  Google Scholar 

  214. Kawahara T, Suzuki G, Mizuno S, et al. Effect of active vitamin D treatment on development of type 2 diabetes: DPVD randomised controlled trial in Japanese population. BMJ. 2022;377: e066222. https://doi.org/10.1136/bmj-2021-066222.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Pittas AG, Kawahara T, Jorde R, et al. Vitamin D and risk for type 2 diabetes in people with prediabetes : a systematic review and meta-analysis of individual participant data from 3 randomized clinical trials. Ann Intern Med. 2023;176(3):355–63. https://doi.org/10.7326/m22-3018.

    Article  PubMed  Google Scholar 

  216. Ooi EM, Afzal S, Nordestgaard BG. Elevated remnant cholesterol in 25-hydroxyvitamin D deficiency in the general population: Mendelian randomization study. Circ Cardiovasc Genet. 2014;7(5):650–8. https://doi.org/10.1161/CIRCGENETICS.113.000416.

    Article  CAS  PubMed  Google Scholar 

  217. Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: a systematic review and meta-analysis. Nutr Rev. 2019;77(12):890–902. https://doi.org/10.1093/nutrit/nuz037.

    Article  PubMed  Google Scholar 

  218. Rahman ST, Waterhouse M, Romero BD, et al. Vitamin D supplementation and the incidence of cataract surgery in older Australian adults. Ophthalmology. 2023;130(3):313–23. https://doi.org/10.1016/j.ophtha.2022.09.015.

    Article  PubMed  Google Scholar 

  219. Malihi Z, Wu Z, Stewart AW, Lawes CM, Scragg R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr. 2016;104(4):1039–51. https://doi.org/10.3945/ajcn.116.134981.

    Article  CAS  PubMed  Google Scholar 

  220. Malihi Z, Wu Z, Lawes CMM, Scragg R. Adverse events from large dose vitamin D supplementation taken for one year or longer. J Steroid Biochem Mol Biol. 2019;188:29–37. https://doi.org/10.1016/j.jsbmb.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  221. Zittermann A, Trummer C, Theiler-Schwetz V, Pilz S. Long-term supplementation with 3200 to 4000 IU of vitamin D daily and adverse events: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr. 2023. https://doi.org/10.1007/s00394-023-03124-w.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Malihi Z, Lawes CMM, Wu Z, et al. Monthly high-dose vitamin D supplementation does not increase kidney stone risk or serum calcium: results from a randomized controlled trial. Am J Clin Nutr. 2019;109(6):1578–87. https://doi.org/10.1093/ajcn/nqy378.

    Article  PubMed  Google Scholar 

  223. Taylor EN, Hoofnagle AN, Curhan GC. Calcium and phosphorus regulatory hormones and risk of incident symptomatic kidney stones. Clin J Am Soc Nephrol. 2015;10(4):667–75. https://doi.org/10.2215/cjn.07060714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington (DC): National Academies Press; 2011.

    Google Scholar 

  225. Hyppönen E, Vimaleswaran KS, Zhou A. Genetic determinants of 25-hydroxyvitamin D concentrations and their relevance to public health. Nutrients. 2022. https://doi.org/10.3390/nu14204408.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186. https://doi.org/10.12688/wellcomeopenres.15555.2.

    Article  PubMed  Google Scholar 

  227. Tian H, Mason AM, Liu C, Burgess S. Relaxing parametric assumptions for non-linear Mendelian randomization using a doubly-ranked stratification method. PLoS Genet. 2023;19(6): e1010823. https://doi.org/10.1371/journal.pgen.1010823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hamilton FW, Hughes DA, Spiller W, Tilling K, Davey Smith G. Non-linear mendelian randomization: evaluation of biases using negative controls with a focus on BMI and Vitamin D. medRxiv. 2023. https://doi.org/10.1101/2023.08.21.23293658.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Yunshan Li, Xiaocong Dong, Mingjie Zhang, and Jing Shu from the School of Public Health, Sun Yat-sen University for their assistance in checking the extracted data and presenting the results.

Funding

This work was supported by the National Natural Science Foundation of China (81803219) and the Natural Science Foundation of Guangdong Province, China (2018A030310335). The sponsors had no role in the study design, data analysis or interpretation of results.

Author information

Authors and Affiliations

Authors

Contributions

ELG and AF conceptualized the review; AF designed the search strategy and performed the literature search; AF and YZ screened abstracts and full-texts; AF and YZ extracted the data; AF, YZ and PY checked the data; YZ, PY and AF assessed the methodological quality of the included studies; AF and YZ analyzed the data; AF wrote the original draft of the manuscript; ELG and XZ edited and critically reviewed the original draft of the manuscript; ELG had primary responsibility for the final content; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Edward L. Giovannucci.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not available.

Consent to participate

Not available.

Consent to publish

Not available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, A., Zhao, Y., Yang, P. et al. Vitamin D and human health: evidence from Mendelian randomization studies. Eur J Epidemiol (2024). https://doi.org/10.1007/s10654-023-01075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10654-023-01075-4

Keywords

Navigation