Mean age of the 128 AS patients was 41.0 years (SD ± 11.1), median disease duration was 14 years (range 1–53), and 73% were male. Of the patients, 89% had a BASDAI score ≥4, 74% had increased ESR levels, and 77% had increased CRP levels (Table 1).
Table 1 Characteristics of the AS study population (n = 128)
Correlations between biochemical and clinical assessments
Correlations between BMD, BTM, vitamin D, and clinical assessments of disease activity and physical function were calculated to obtain more knowledge about the pathophysiology of AS-related osteoporosis (Table 2). There was a significant positive correlation between lumbar spine and hip BMD T-scores. Lumbar spine BMD T-score positively correlated with BASDAI (p < 0.05) and hip BMD T-score negatively correlated with OC and sCTX Z-scores (p < 0.05).There were significant positive correlations between all BTM Z-scores. PINP Z-score positively correlated with age (p < 0.05), and PINP and sCTX Z-scores positively correlated with disease duration (p < 0.05). Finally, ESR, CRP, ASDAS, or BASFI were not significantly correlated with any of the BMD T-scores or BTM Z-scores.
Table 2 Correlations between clinical and biochemical assessments in AS patients with active disease (n = 128)
The difference between lumbar spine and hip BMD T-score positively correlated with disease duration (ρ = 0.340, p < 0.05). As shown in Fig. 1, patients with long disease duration never had a lumbar spine BMD T-score that was much lower than their hip BMD T-score, which indicates that osteoproliferation in the lumbar spine has resulted in an overestimation of the lumbar spine BMD T-score in patients with advanced AS.
Vertebral fractures
Of the patients, 39% had at least 20% reduction in anterior, middle, and/or posterior vertebral height, indicating vertebral fracture. In total, 74 vertebral fractures were detected; 59 wedge fractures, 14 biconcave fractures, and one crush fracture. No significant differences between patients with and without vertebral fractures were found in age (mean 43.1 years ± SD 11.1 vs. 39.9 years ± 11.0; p = 0.149), disease duration (median 15 years (range 1–47) vs. 12 years (1–53); p = 0.925), BMD T-scores (lumbar spine −0.70 ± 1.33 vs. −0.71 ± 1.51; p = 0.984, hip −0.47 ± 1.03 vs. −0.59 ± 1.10; p = 0.591), and BTM Z-scores (PINP 0.15 (−1.74–3.08) vs. 0.22 (−1.65–3.55); p = 0.493), sCTX −0.21 (−2.28–5.90) vs. −0.23 (−2.58–3.92); p = 0.778), OC −0.31 (−2.86–1.50) vs. −0.18 (−2.66–2.52); p = 0.460, respectively).
Predictors of low BMD
Predictor analysis was performed to identify parameters that are related to low BMD. In total, 57% of patients had a lumbar spine or hip BMD T-score of −1 or less, indicating low BMD. Male gender, lower BASDAI score, higher PINP Z-score, higher OC Z-score, and higher sCTX Z-score were significantly associated with low BMD in univariate regression analysis. Since male gender was significantly associated with low BMD, variables that significantly differed between men and women were included in multivariate analysis: age, ESR, OC Z-score, sCTX Z-score, and 25OHvitD. Multivariate regression analysis showed that older age (odds ratio (OR): 1.066, 95% confidence interval (CI): 1.008–1.129), lower BASDAI score (OR: 0.648, 0.445–0.923), higher ESR (OR: 1.025, 0.994–1.057), and higher sCTX Z-score (OR: 2.563, 1.370–4.794) were independently related to low BMD (Table 3). OC Z-score was not included in multivariate analysis, probably due to the strong correlation between sCTX Z-score and OC Z-score (ρ = 0.601, p = 0.000). However, higher OC Z-score was also independently related to low BMD in the presence of age, BASDAI, and ESR (OR: 2.255, 1.238–4.107), indicating that both sCTX Z-score and OC Z-score are important. The Nagelkerke R
2 of the multivariate models including sCTX Z-score and OC Z-score were 0.381 and 0.338, respectively.
Table 3 Results of univariate and multivariate logistic regression analysis for low BMD
Predictors of sCTX and OC Z-scores
Since sCTX and OC Z-scores seem to be valuable markers to detect bone loss, predictor analyses for these markers were performed to get more information about the pathophysiology of AS-related osteoporosis. Gender, PINP Z-score, OC Z-score, and 25OHvitD were significantly associated with sCTX Z-score in univariate regression analysis. Since gender was significantly associated with sCTX Z-score, the previous mentioned variables that significantly differed between men and women were included in multivariate analysis. Multivariate regression analysis showed that ESR (OR: 0.012, 0.000–0.025), PINP Z-score (OR: 0.292, 0.022–0.563), OC Z-score (OR: 0.505, 0.243–0.768), and 25OHvitD (OR: −0.009, −0.018–0.000) were independently related to sCTX Z-score (Table 4). The R
2 of this multivariate model was 0.424.
Table 4 Results of univariate and multivariate linear regression analysis for sCTX Z-score
Gender, PINP Z-score, and sCTX Z-score were significantly associated with OC Z-score in univariate regression analysis. Since gender was significantly associated with OC Z-score, the previous mentioned variables that significantly differed between men and women were included in multivariate analysis. Multivariate regression analysis showed that age (OR: −0.018, −0.034–−0.001), gender (OR: −0.607, −0.999 –−0.214), PINP Z-score (OR: 0.464, 0.282–0.646), and sCTX Z-score (OR: 0.243, 0.110–0.377) were independently related to OC Z-score (Table 5). The R
2 of this multivariate model was 0.509.
Table 5 Results of univariate and multivariate linear regression analysis for OC Z-score