Skip to main content
Log in

Wall roughness effects on the supersonic flow over a circular cylinder

  • Original article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A comprehensive and systematic, computational investigation is presented on the effect of wall roughness on the supersonic flow over a circular cylinder with a Reynolds number of 500. Flow simulations are conducted using ANSYS Fluent. Wall roughness is modeled by a perturbation of the cylinder geometry with harmonic modes of varying amplitude and frequency. Validated smooth cylinder flow simulations for a range of Mach and Reynolds numbers with slip and no-slip wall serve as a reference. Roughness is shown to increase the effective diameter of the cylinder and the drag by displacing the outer flow along the peaks of the roughness elements. For lower frequencies, this effect is less pronounced than for higher roughness frequencies. While for smooth cylinders the vorticity is mostly generated by viscous shear forces, for rough cylinder the baroclinic vorticity generation is shown to be dominant and shown to determine the topology of the recirculating region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. White, F.M.: Viscous Fluid Flow, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  2. Farell, C.: Flow around fixed circular cylinders: fluctuating loads. J. Eng. Mech. Div. 107(3), 565–588 (1981). https://doi.org/10.1061/JMCEA3.0002725

    Article  Google Scholar 

  3. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28(1), 477–539 (1996). https://doi.org/10.1146/annurev.fl.28.010196.002401

    Article  MathSciNet  Google Scholar 

  4. Loth, E.: Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26(3), 161–223 (2000). https://doi.org/10.1016/S0360-1285(99)00013-1

    Article  Google Scholar 

  5. Boiko, V., Kiselev, V., Kiselev, S., Papyrin, A., Poplavski, S., Fomin, V.: Shock wave interaction with a cloud of particles. Shock Waves 7, 275–285 (1997). https://doi.org/10.1007/s001930050082

    Article  MATH  Google Scholar 

  6. Sen, O., Davis, S., Jacobs, G., Udaykumar, H.: Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation. J. Comput. Phys. 294, 585–604 (2015). https://doi.org/10.1016/j.jcp.2015.03.043

    Article  MathSciNet  MATH  Google Scholar 

  7. Sen, O., Gaul, N., Choi, K., Jacobs, G., Udaykumar, H.: Evaluation of multifidelity surrogate modeling techniques to construct closure laws for drag in shock-particle interactions. J. Comput. Phys. 371, 434–451 (2018). https://doi.org/10.1016/j.jcp.2018.05.039

    Article  MathSciNet  Google Scholar 

  8. Chapman, D.R., Kuehn, D.M., Larson, H.K.: Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. National Advisory Committee for Aeronautics. Tech. Rep. 1356 (1958)

  9. Tewfik, O., Giedt, W.: Heat transfer, recovery factor, and pressure distributions around a circular cylinder, normal to a supersonic rarefied-air stream. J. Aerospace Sci. 27(10), 721–729 (1960). https://doi.org/10.2514/8.8737

    Article  MATH  Google Scholar 

  10. McCarthy Jr, J.F., Kubota, T.: A study of wakes behind a circular cylinder at M equal 5.7. AIAA J. 2(4), 629–636 (1964). https://doi.org/10.2514/3.2399

  11. Reeves, B.L., Lees, L.: Theory of laminar near wake of blunt bodies in hypersonic flow. AIAA J. 3(11), 2061–2074 (1965). https://doi.org/10.2514/3.3316

    Article  Google Scholar 

  12. Grange, J.M., Klineberg, J.M., Lees, L.: Laminar boundary-layer separation and near-wake flow for a smooth blunt body at supersonic and hypersonic speeds. AIAA J. 5(6), 1089–1096 (1967). https://doi.org/10.2514/3.4142

    Article  Google Scholar 

  13. Bashkin, V., Egorov, I., Egorova, M., Ivanov, D.: Initiation and development of separated flow behind a circular cylinder in a supersonic stream. Fluid Dyn. 33(6), 833–841 (1998). https://doi.org/10.1007/BF02698651

    Article  MATH  Google Scholar 

  14. Bashkin, V., Vaganov, A., Egorov, I., Ivanov, D., Ignatova, G.: Comparison of calculated and experimental data on supersonic flow past a circular cylinder. Fluid Dyn. 37(3), 473–483 (2002). https://doi.org/10.1023/A:1019675027402

    Article  MATH  Google Scholar 

  15. Schmidt, B., Shepherd, J.: Oscillations in cylinder wakes at Mach 4. J. Fluid Mech. 785(R3), 1–8 (2015). https://doi.org/10.1017/jfm.2015.668

    Article  MathSciNet  Google Scholar 

  16. Hinman, W.S., Johansen, C.T.: Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder. Shock Waves 26, 717–727 (2016). https://doi.org/10.1007/s00193-015-0615-y

  17. Hinman, W.S., Johansen, C.T.: Rapid prediction of hypersonic blunt body flows for parametric design studies. Aerosp. Sci. Technol. 58, 48–59 (2016). https://doi.org/10.1016/j.ast.2016.08.007

    Article  Google Scholar 

  18. Hinman, W.S., Johansen, C.T.: Mechanisms in the hypersonic laminar near wake of a blunt body. J. Fluid Mech. 839, 33–75 (2018). https://doi.org/10.1017/jfm.2017.902

    Article  MathSciNet  MATH  Google Scholar 

  19. Hinman, W.S., Johansen, C.T.: Reynolds and Mach number dependence of hypersonic blunt body laminar near wakes. AIAA J. 55(2), 500–508 (2017). https://doi.org/10.2514/1.J055220

    Article  Google Scholar 

  20. Güven, O., Farell, C., Patel, V.: Surface-roughness effects on the mean flow past circular cylinders. J. Fluid Mech. 98(4), 673–701 (1980). https://doi.org/10.1017/S0022112080000341

    Article  Google Scholar 

  21. Achenbach, E., Heinecke, E.: On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers \(6\times 10^3\) to \(5\times 10^6\). J. Fluid Mech. 109, 239–251 (1981). https://doi.org/10.1017/S002211208100102X

    Article  Google Scholar 

  22. Schneider, S.P.: Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness. J. Spacecr. Rockets 45(6), 1090–1105 (2008). https://doi.org/10.2514/1.37431

    Article  Google Scholar 

  23. ANSYS: 15.0. ANSYS Fluent theory guide (2013)

  24. Anderson Jr, J.D.: Hypersonic and High-Temperature Gas Dynamics. American Institute of Aeronautics and Astronautics (2006)

  25. NIST-JANAF thermochemical tables. https://janaf.nist.gov (accessed: 10 November 2021)

  26. Kadoya, K., Matsunaga, N., Nagashima, A.: Viscosity and thermal conductivity of dry air in the gaseous phase. J. Phys. Chem. Ref. Data 14(4), 947–970 (1985). https://doi.org/10.1063/1.555744

    Article  Google Scholar 

  27. Verigin, M., Slavin, J., Szabo, A., Gombosi, T., Kotova, G., Plochova, O., Szegö, K., Tátrallyay, M., Kabin, K., Shugaev, F.: Planetary bow shocks: gasdynamic analytic approach. J. Geophys. Res. Space Phys. 108(A8, 1323) (2003). https://doi.org/10.1029/2002JA009711

  28. Grasso, F., Pettinelli, C.: Analysis of laminar near-wake hypersonic flows. J. Spacecr. Rockets 32(6), 970–980 (1995). https://doi.org/10.2514/3.26717

    Article  Google Scholar 

  29. Biswas, S., Kalita, J.C.: HOC simulation of Moffatt eddies and its flow topology in the triangular cavity flow. arXiv (2017). https://doi.org/10.48550/ARXIV.1710.06251

  30. Anderson, J.D.: Modern Compressible Flow: With Historical Perspective. Tata McGraw-Hill Education, New York (2003)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding provided by a mobility grant from Spain, and funding from AFOSR under Grant No. FA9550-19-1-0387 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Jacobs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Hadjadj.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Specific heat coefficients

\(C_P /R = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4\), where R is the universal gas constant for air that is 287 J/(kg K) for air [25].

See Tables 10 and 11.

1.2 Thermal conductivity

See Table 12 and Fig. 29.

Table 12 Air thermal conductivity piecewise linear coefficients [26]
Fig. 29
figure 29

Thermal conductivity obtained with the Eucken method given a constant \(\gamma \), and the thermal conductivity of dry air at two different pressures from Ref. [26]

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco-Casares, A., Jacobs, G.B. Wall roughness effects on the supersonic flow over a circular cylinder. Shock Waves 32, 643–663 (2022). https://doi.org/10.1007/s00193-022-01098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01098-y

Keywords

Navigation