Skip to main content
Log in

Extension of geometrical shock dynamics for blast wave propagation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The direct numerical simulation of blast waves is a challenging task due to the wide range of spatial and temporal scales involved. Moreover, in a real environment (topography, urban area), the blast wave interacts with geometrical obstacles, resulting in reflection, diffraction, and wave recombination phenomena. The shape of the front becomes complex, which limits the efficiency of simple empirical methods. This work aims at contributing to the development of a fast running method for blast waves propagating in the presence of obstacles. This is achieved through an ad hoc extension of the simplified hyperbolic geometrical shock dynamics (GSD) model, which leads to a drastic reduction in the computational cost in comparison with the full Euler system. The new model, called geometrical blast dynamics, is able to take into account any kind of source and obstacle. It relies on a previous extension of GSD for diffraction over wedges to obtain consistent physical behavior, especially in the limit of low Mach numbers. The new model is fully described. Its numerical integration is straightforward. Results compare favorably with experiments, semiempirical models from the literature, and Eulerian simulations, over a wide range of configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nguyen-Din, M., Lardjane, N., Duchenne, C., Gainville, O.: Direct simulations of outdoor blast wave propagation from source to receiver. Shock Waves 27, 593–614 (2017). https://doi.org/10.1007/s00193-017-0711-2

    Article  Google Scholar 

  2. Kinney, G., Graham, K.: Explosive Shocks in Air. Springer, Berlin (2013)

    Google Scholar 

  3. US Army Corps of Eng. Naval Facil. Eng. Command, A.F.C.E.S.A.: Unified Facilities Criteria (UFC) 3-340-02: Structures to resist the effect of accidental explosions (2008). https://www.wbdg.org/FFC/DOD/UFC/ARCHIVES/ufc_3_340_02.pdf. Accessed 05 Aug 2019

  4. Eveillard, S., Lardjane, N., Vinçont, J., Sochet, I.: Towards a fast-running method for blast-wave mitigation by a prismatic blast wall. C. R. Méc. 341(8), 625–635 (2013). https://doi.org/10.1016/j.crme.2013.06.004

    Article  Google Scholar 

  5. Silvestrini, M., Genova, B., Trujillo, F.L.: Energy concentration factor a simple concept for the prediction of blast propagation in partially confined geometries. J. Loss. Prev. Process. Ind. 22(4), 449–454 (2009). https://doi.org/10.1016/j.jlp.2009.02.018

    Article  Google Scholar 

  6. Needham, C.: Blast wave propagation. In: Blast Waves, pp. 87–99. Springer (2010). https://doi.org/10.1007/978-3-319-65382-2

  7. Boutillier, J., Ehrhardt, L., De Mezzo, S., Deck, C., Magnan, P., Naz, P., Willinger, R.: Evaluation of the existing triple point path models with new experimental data: proposal of an original empirical formulation. Shock Waves 28, 243–252 (2018). https://doi.org/10.1007/s00193-017-0743-7

    Article  Google Scholar 

  8. Miller, P.: Towards the modelling of blast loads on structures. Master Thesis, University of Toronto (2004). http://www.vectoranalysisgroup.com/theses/Miller-MASc(2004).pdf. Accessed 05 Aug 2019

  9. Lapébie, E.: Flash: fast lethality assessment for structures and humans. Colloque de restitution du projet ANR Democrite, Paris (2018). http://www.anr-democrite.fr/sites/mines-ales.fr/files/u178/3.2_explosions.pdf. Accessed 07 June 2020

  10. Flood, I., Bewick, B., Dinan, R.: A new method for very fast simulation of blast wave propagation in complex built environments. Technical Report, DTIC document (2010). https://pdfs.semanticscholar.org/e3df/2abe910276e7f46c4e9a7b70b8337c2ff6f1.pdf. Accessed 05 Aug 2019

  11. Whitham, G.: A new approach to problems of shock dynamics. Part I: two-dimensional problems. J. Fluid Mech. 2(2), 145–171 (1957). https://doi.org/10.1017/S002211205700004X

    Article  MathSciNet  MATH  Google Scholar 

  12. Whitham, G.: A new approach to problems of shock dynamics. Part II: three-dimensional problems. J. Fluid Mech. 5(3), 369–386 (1959). https://doi.org/10.1017/S002211205900026X

    Article  MathSciNet  MATH  Google Scholar 

  13. Whitham, G.: Shock dynamics. In: Linear and Nonlinear Waves, 3rd edn. Wiley (1999). https://doi.org/10.1002/9781118032954

  14. Best, J.: A generalisation of the theory of Geometrical Shock Dynamics. Shock Waves 1(4), 251–273 (1991). https://doi.org/10.1007/BF01418882

    Article  MATH  Google Scholar 

  15. Schwendeman, D., Whitham, G.: On converging shock waves. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 413, 297–311 (1987). https://doi.org/10.1098/rspa.1987.0116

    Article  MathSciNet  MATH  Google Scholar 

  16. Schwendeman, D.: On converging shock waves of spherical and polyhedral form. J. Fluid Mech. 454, 365–386 (2002). https://doi.org/10.1017/S0022112001007170

    Article  MathSciNet  MATH  Google Scholar 

  17. Catherasoo, C., Sturtevant, B.: Shock dynamics in non-uniform media. J. Fluid Mech. 127, 539–561 (1983). https://doi.org/10.1017/S0022112083002876

    Article  MathSciNet  MATH  Google Scholar 

  18. Besset, C., Blanc, E.: Propagation of vertical shock waves in the atmosphere. J. Acoust. Soc. Am. 95(4), 1830–1839 (1994). https://doi.org/10.1121/1.408689

    Article  Google Scholar 

  19. Skews, B.: The shape of a diffracting shock wave. J. Fluid Mech. 29(02), 297–304 (1967). https://doi.org/10.1017/S0022112067000825

    Article  Google Scholar 

  20. Coulouvrat, F., Marchiano, R.: Nonlinear Fresnel diffraction of weak shock waves. J. Acoust. Soc. Am. 114(4), 1749–1757 (2003). https://doi.org/10.1121/1.1610454

    Article  Google Scholar 

  21. Bazhenova, T., Gvozdeva, L., Zhilin, Y.: Change in the shape of the diffracting shock wave at a convex corner. Acta Astronaut. 6(3), 401–412 (1979). https://doi.org/10.1016/0094-5765(79)90107-3

    Article  Google Scholar 

  22. Sharma, V., Radha, C.: On one-dimensional planar and nonplanar shock waves in a relaxing gas. Phys. Fluids 6(6), 2177–2190 (1994). https://doi.org/10.1063/1.868220

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharma, V., Radha, C.: Three dimensional shock wave propagation in an ideal gas. Int. J. Non Linear Mech. 30(3), 305–322 (1995). https://doi.org/10.1016/0020-7462(95)00005-9

    Article  MATH  Google Scholar 

  24. Pandey, M., Sharma, V.: Kinematics of a shock wave of arbitrary strength in a non-ideal gas. Q. Appl. Math. 67(3), 401–418 (2009). https://doi.org/10.1090/S0033-569X-09-01111-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Ridoux, J., Lardjane, N., Monasse, L., Coulouvrat, F.: Comparison of Geometrical Shock Dynamics and kinematic models for shock wave propagation. Shock Waves 27(5), 1–16 (2017). https://doi.org/10.1007/s00193-017-0748-2

    Article  Google Scholar 

  26. Oshima, K., Sugaya, K., Yamamoto, M., Totoki, T.: Diffraction of a plane shock wave around a corner. ISAS Rep. 30(2), 51–82 (1965)

    Google Scholar 

  27. Oshima, K.: Propagation of spacially non-uniform shock waves. ISAS Rep. 30(6), 195 (1965)

    Google Scholar 

  28. Ridoux, J., Lardjane, N., Monasse, L., Coulouvrat, F.: Beyond the limitation of Geometrical Shock Dynamics for diffraction over wedges. Shock Waves 29, 1–23 (2019). https://doi.org/10.1007/s00193-018-00885-w

    Article  Google Scholar 

  29. Peace, J., Lu, F.: On the propagation of decaying planar shock and blast waves through non-uniform channels. Shock Waves 28, 1–15 (2018). https://doi.org/10.1007/s00193-018-0818-0

    Article  Google Scholar 

  30. Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves, vol. 21. Springer, Berlin (1999)

    MATH  Google Scholar 

  31. Swisdak, M.M.J.: Simplified kingery airblast calculations. Minutes of the 26th DOD Explosives Safety Seminar (1994). http://www.dtic.mil/dtic/tr/fulltext/u2/a526744.pdf. Accessed 16 Jan 2017

  32. Ben-Dor, G.: Oblique shock wave reflections. In: Handbook of Shock Waves, vol. 2, pp. 68–179. Academic Press (2000)

  33. von Neumann, J.: John von Neumann collected work. In: Taub, A.H. (ed.) Oblique Reflections of Shocks Shock Waves Reflections, vol. 6, pp. 238–299. Pergamon Press, Oxford (1963)

    Google Scholar 

  34. Colella, P., Henderson, L.: The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech. 213, 71–94 (1990). https://doi.org/10.1017/S0022112090002221

    Article  MathSciNet  Google Scholar 

  35. Skews, B., Ashworth, J.: The physical nature of weak shock wave reflection. J. Fluid Mech. 542, 105–114 (2005). https://doi.org/10.1017/S0022112005006543

    Article  MathSciNet  MATH  Google Scholar 

  36. Baskar, S., Coulouvrat, F., Marchiano, R.: Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to mach to Snell–Descartes reflections. J. Fluid Mech. 575, 27–55 (2007). https://doi.org/10.1017/S0022112006003752

    Article  MathSciNet  MATH  Google Scholar 

  37. Henshaw, W., Smyth, N., Schwendeman, D.: Numerical shock propagation using Geometrical Shock Dynamics. J. Fluid Mech. 171, 519–545 (1986). https://doi.org/10.1017/S0022112086001568

    Article  MATH  Google Scholar 

  38. Taylor, G.: The formation of a blast wave by a very intense explosion. Theorical discussion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 159–174 (1950). https://doi.org/10.1098/rspa.1950.0049

  39. Jourdren, H.: HERA: a hydrodynamic AMR platform for multi-physics simulations. In: Adaptive Mesh Refinement-Theory and Applications, pp. 283–294. Springer (2005). https://doi.org/10.1007/3-540-27039-6_19

  40. Eveillard, S.: Propagation d’une onde de choc en présence d’une barrière de protection. PhD thesis, Université d’Orléans (2013). www.theses.fr/2013ORLE2026/document. Accessed 05 Aug 2019

  41. Noumir, Y., Le Guilcher, A., Lardjane, N., Monneau, R., Sarrazin, A.: A fast-marching like algorithm for Geometrical Shock Dynamics. J. Comput. Phys. 284, 206–229 (2015). https://doi.org/10.1016/j.jcp.2014.12.019

    Article  MathSciNet  MATH  Google Scholar 

  42. Peton, N., Lardjane, N.: An immersed boundary method for geometrical shock dynamics. J. Comput. Phys. 417, (2020). https://doi.org/10.1016/j.jcp.2020.109573

Download references

Acknowledgements

Part of this work has been possible thanks to the LETMA collaboration: a contractual research laboratory between CEA, CNRS, École Centrale Lyon, C-Innov, and Sorbonne University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lardjane.

Additional information

Communicated by C. Needham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Results for blast wave reflection over a concave corner

Appendix: Results for blast wave reflection over a concave corner

Numerical results for reflection of a spherical blast wave over a concave corner, as explained in Sect. 5.2, are summarized in Table 8. 2D axisymmetric Lagrangian simulations have been performed with \(\Delta s=0.005\) m. For \({\text {dist}}=1\) m and \(\theta _\mathrm {w}=90^\circ \), the shock–shock meets the axis of symmetry resulting in a second Mach stem which perturbs results at 5 m from the corner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridoux, J., Lardjane, N., Monasse, L. et al. Extension of geometrical shock dynamics for blast wave propagation. Shock Waves 30, 563–583 (2020). https://doi.org/10.1007/s00193-020-00954-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00954-z

Keywords

Navigation