Skip to main content
Log in

Gravity-current-induced test gas stratification and its prevention in constrained reaction volume shock-tube experiments

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The constrained reaction volume (CRV) method for shock-tube experiments makes it possible to conduct chemical kinetics studies at nearly constant pressure while inhibiting remote ignition. The application of end-wall imaging revealed, however, that CRV experiments are susceptible to vertical stratification at the interface of the test and buffer gases. This work identifies gravity currents as the mechanism leading to the test gas stratification, providing both a theoretical development and experimental investigation of their behavior in a shock tube. Parametric studies are conducted with both the gate valve and stage-filled CRV methods using a novel beam-split laser absorption diagnostic. The speed of gravity-current-induced mixing in both gate valve and stage-filled CRV experiments is shown to depend on the molecular weight matching of the gases and the fill pressure. Mixing velocity in gate valve experiments is shown not to depend on the gate valve speed. In stage-filled experiments, mixing time is seen to be a strong function of the test gas length. Recommended practices for avoiding gravity-current-induced mixing and stratification are described, including gas density matching, utilizing double diaphragms, increasing test gas length in stage-filled experiments, and implementing a gas interface diagnostic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Shepherd, W.: The ignition of gas mixtures by impulsive pressures. Symposium on Combustion and Flame, and Explosion Phenomena 3(1), 301–316 (1948). https://doi.org/10.1016/S1062-2896(49)80037-7

    Article  Google Scholar 

  2. Bauer, S.H.: Chemical kinetics in shock tubes. Science 141(3584), 867–879 (1963). https://doi.org/10.1126/science.141.3584.867

    Article  Google Scholar 

  3. Davis, H.J., Curchack, H.D.: Shock tube techniques and instrumentation. Technical Report TR-1429, Harry Diamond Laboratories (1969). https://apps.dtic.mil/dtic/tr/fulltext/u2/692295.pdf

  4. Belford, R.L., Strehlow, R.A.: Shock tube technique in chemical kinetics. Annu. Rev. Phys. Chem. 20(1), 247–272 (1969). https://doi.org/10.1146/annurev.pc.20.100169.001335

    Article  Google Scholar 

  5. Lifshitz, A. (ed.): Shock Waves in Chemistry. Taylor & Francis, London (1981)

    Google Scholar 

  6. Tsang, W., Lifshitz, A.: Shock tube techniques in chemical kinetics. Annu. Rev. Phys. Chem. 41(1), 559–599 (1990). https://doi.org/10.1146/annurev.pc.41.100190.003015

    Article  Google Scholar 

  7. Hanson, R., Davidson, D.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44, 103–114 (2014). https://doi.org/10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  8. Griffiths, J., Jiao, Q., Kordylewski, W., Schreiber, M., Meyer, J., Knoche, K.: Experimental and numerical studies of ditertiary butyl peroxide combustion at high pressures in a rapid compression machine. Combust. Flame 93(3), 303–315 (1993). https://doi.org/10.1016/0010-2180(93)90111-F

    Article  Google Scholar 

  9. Lee, D., Hochgreb, S.: Rapid compression machines: Heat transfer and suppression of corner vortex. Combust. Flame 114(3), 531–545 (1998). https://doi.org/10.1016/S0010-2180(97)00327-1

    Article  Google Scholar 

  10. Mittal, G., Sung, C.J.: Aerodynamics inside a rapid compression machine. Combust. Flame 145(1), 160–180 (2006). https://doi.org/10.1016/j.combustflame.2005.10.019

    Article  Google Scholar 

  11. Sung, C.J., Curran, H.J.: Using rapid compression machines for chemical kinetics studies. Prog. Energy Combust. Sci. 44, 1–18 (2014). https://doi.org/10.1016/j.pecs.2014.04.001

    Article  Google Scholar 

  12. Houidi, M.B., Sotton, J., Bellenoue, M.: Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities: Impact on combustion regimes and negative temperature coefficient behavior. Fuel 186, 476–495 (2016). https://doi.org/10.1016/j.fuel.2016.08.089

    Article  Google Scholar 

  13. Bartok, W., Heath, C.E., Weiss, M.A.: Mixing in a jet-stirred reactor. AIChE J. 6(4), 685–687 (1960). https://doi.org/10.1002/aic.690060433

    Article  Google Scholar 

  14. Evangelista, J.J., Shinnar, R., Katz, S.: The effect of imperfect mixing on stirred combustion reactors. Symp. Int. Combust. 12(1), 901–912 (1969). https://doi.org/10.1016/S0082-0784(69)80470-4

    Article  Google Scholar 

  15. Nenniger, J., Kridiotis, A., Chomiak, J., Longwell, J., Sarofim, A.: Characterization of a toroidal well stirred reactor. Symp. Int. Combust. 20(1), 473–479 (1985). https://doi.org/10.1016/S0082-0784(85)80535-X

    Article  Google Scholar 

  16. Barat, R.B.: Jet-stirred combustor behavior near blowout: observations and implications. Combust. Sci. Technol. 84(1–6), 187–197 (1992). https://doi.org/10.1080/00102209208951853

    Article  Google Scholar 

  17. Dumitrescu, L.Z.: An attenuation-free shock tube. Phys. Fluids 15(1), 207 (1972). https://doi.org/10.1063/1.1693742

    Article  Google Scholar 

  18. Stotz, I., Lamanna, G., Hettrich, H., Weigand, B., Steelant, J.: Design of a double diaphragm shock tube for fluid disintegration studies. Rev. Sci. Instrum. 79(12), 125106 (2008). https://doi.org/10.1063/1.3058609

    Article  Google Scholar 

  19. Hong, Z., Pang, G.A., Vasu, S.S., Davidson, D.F., Hanson, R.K.: The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves 19(2), 113–123 (2009). https://doi.org/10.1007/s00193-009-0205-y

    Article  Google Scholar 

  20. Hanson, R.K., Pang, G.A., Chakraborty, S., Ren, W., Wang, S., Davidson, D.F.: Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves. Combust. Flame 160(9), 1550–1558 (2013). https://doi.org/10.1016/j.combustflame.2013.03.026

    Article  Google Scholar 

  21. Wang, B., Olivier, H., Grönig, H.: Ignition of shock-heated \({\text{ H }}_2\)-air-steam mixtures. Combust. Flame 133(1), 93–106 (2003). https://doi.org/10.1016/S0010-2180(02)00552-7

    Article  Google Scholar 

  22. Dryer, F.L., Chaos, M.: Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: experimental data interpretation and kinetic modeling implications. Combust. Flame 152(1), 293–299 (2008). https://doi.org/10.1016/j.combustflame.2007.08.005

    Article  Google Scholar 

  23. Pang, G., Davidson, D., Hanson, R.: Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures. Proc. Combust. Inst. 32(1), 181–188 (2009). https://doi.org/10.1016/j.proci.2008.06.014

    Article  Google Scholar 

  24. Uygun, Y., Ishihara, S., Olivier, H.: A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes. Combust. Flame 161(10), 2519–2530 (2014). https://doi.org/10.1016/j.combustflame.2014.04.004

    Article  Google Scholar 

  25. Javed, T., Badra, J., Jaasim, M., Es-Sebbar, E., Labastida, M.F., Chung, S.H., Im, H.G., Farooq, A.: Shock tube ignition delay data affected by localized ignition phenomena. Combust. Sci. Technol. 189(7), 1138–1161 (2017). https://doi.org/10.1080/00102202.2016.1272599

    Article  Google Scholar 

  26. Uygun, Y.: Ignition studies of undiluted diethyl ether in a high-pressure shock tube. Combust. Flame 194, 396–409 (2018). https://doi.org/10.1016/j.combustflame.2018.05.022

    Article  Google Scholar 

  27. Ninnemann, E., Koroglu, B., Pryor, O., Barak, S., Nash, L., Loparo, Z., Sosa, J., Ahmed, K., Vasu, S.: New insights into the shock tube ignition of \({\text{ H }}_2/{\text{ O }}_2\) at low to moderate temperatures using high-speed end-wall imaging. Combust. Flame 187, 11–21 (2018). https://doi.org/10.1016/j.combustflame.2017.08.021

    Article  Google Scholar 

  28. Troutman, V.A., Strand, C.L., Campbell, M.F., Tulgestke, A.M., Miller, V.A., Davidson, D.F., Hanson, R.K.: High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall. Appl. Phys. B: Lasers Opt. 122(3), 1–7 (2016). https://doi.org/10.1007/s00340-016-6326-y

    Article  Google Scholar 

  29. Tulgestke, A.M., Johnson, S.E., Davidson, D.F., Hanson, R.K.: High-speed imaging of inhomogeneous ignition in a shock tube. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, MA, Paper 1004 (2017)

  30. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  31. Coombs, D., Akih-Kumgeh, B.: Numerical investigation of the impact of tailored driver gases and driver inserts on shock tube flows. Shock Waves 28(5), 1097 (2018). https://doi.org/10.1007/s00193-018-0851-z

    Article  Google Scholar 

  32. Davidson, D.F., Hanson, R.K.: Spectroscopic diagnostics. In: Ben-Dor, G., Igra, O., Elperin, T., Lifshitz, A. (Eds.) Handbook of Shock Waves, Chapter 5.2. Academic Press, San Diego (2001). https://doi.org/10.1016/B978-012086430-0/50018-X

  33. Brown, C.J., Thomas, G.O.: Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures. Combust. Flame 117(4), 861–870 (1999). https://doi.org/10.1016/S0010-2180(98)00133-3

    Article  Google Scholar 

  34. Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V.: Fundamentals of Acoustics, 4th edn. Wiley, New York (1999)

    Google Scholar 

  35. Zhu, Y., Davidson, D.F., Hanson, R.K.: 1-Butanol ignition delay times at low temperatures: An application of the constrained-reaction-volume strategy. Combust. Flame 161(3), 634–643 (2014). https://doi.org/10.1016/j.combustflame.2013.06.028

    Article  Google Scholar 

  36. Bec, I.L.R., Zhu, Y., Davidson, D.F., Hanson, R.K.: Shock tube measurements of ignition delay times for the butanol isomers using the constrained-reaction-volume strategy. Int. J. Chem. Kinet. 46(8), 433–442 (2014). https://doi.org/10.1002/kin.20859

    Article  Google Scholar 

  37. Li, S., Sarathy, S.M., Davidson, D.F., Hanson, R.K., Westbrook, C.K.: Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation. Combust. Flame 162(5), 2296–2306 (2015). https://doi.org/10.1016/j.combustflame.2015.01.027

    Article  Google Scholar 

  38. Campbell, M.F., Tulgestke, A.M., Davidson, D.F., Hanson, R.K.: A second-generation constrained reaction volume shock tube. Rev. Sci. Instrum. 85(5), 055108 (2014). https://doi.org/10.1063/1.4875056

    Article  Google Scholar 

  39. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Am. J. Sci. Arts 16(96), 441 (1878). https://doi.org/10.11588/heidok.00013220

    Article  MATH  Google Scholar 

  40. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, PhD, LLD, Vol. I Thermodynamics, pp. 144–150. Longmans, Green, and Co., Harlow (1906)

  41. Muskat, M.: Distribution of non-reacting fluids in the gravitational field. Phys. Rev. 35, 1384 (1930). https://doi.org/10.1103/PhysRev.35.1384

    Article  MATH  Google Scholar 

  42. Simpson, J.E.: Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14, 213–234 (1982). https://doi.org/10.1146/annurev.fl.14.010182.001241

    Article  MATH  Google Scholar 

  43. Ostrach, S.: Natural convection in enclosures. J. Heat Transf. 110, 1175–1190 (1988). https://doi.org/10.1115/1.3250619

    Article  Google Scholar 

  44. Simpson, J.: Gravity Currents: In the Environment and the Laboratory. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  45. Ungarish, M.: An Introduction to Gravity Currents and Intrusions. CRC Press, Boca Raton (2009). https://doi.org/10.1201/9781584889045

    Book  MATH  Google Scholar 

  46. Yih, C.: Dynamics of Nonhomogeneous Fluids. MacMillan Series in Advanced Mathematics and Theoretical Physics. MacMillan, New York (1965)

    Google Scholar 

  47. Campbell, M.F.: Studies of Biodiesel Surrogates Using Novel Shock Tube Techniques. PhD Thesis, Stanford University (2014)

  48. Birikh, R.: On small perturbations of a plane parallel flow with cubic velocity profile. J. Appl. Math. Mech. 30(2), 356–361 (1966). https://doi.org/10.1016/0021-8928(67)90191-8

    Article  MATH  Google Scholar 

  49. Bontoux, P., Roux, B., Schiroky, G., Markham, B., Rosenberger, F.: Convection in the vertical midplane of a horizontal cylinder. Comparison of two-dimensional approximations with three-dimensional results. Int. J. Heat Mass Transf. 29(2), 227–240 (1986). https://doi.org/10.1016/0017-9310(86)90230-9

    Article  Google Scholar 

  50. Bejan, A., Tien, C.: Fully developed natural counterflow in a long horizontal pipe with different end temperatures. Int. J. Heat Mass Transf. 21(6), 701–708 (1978). https://doi.org/10.1016/0017-9310(78)90031-5

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under Contract/Grant Number W911NF-17-1-0420. Adam Susa thanks the Department of Defense and Army Research Office for their support through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Susa.

Additional information

Communicated by H. Olivier and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Force balance gravity current model

Appendix: Force balance gravity current model

The viscous model of a gravity current can be derived by considering the balance of hydrostatic and viscous forces on a fluid element of differential height \({\mathrm {d}}z\) and characteristic length L, recalled from Fig. 6. Development of the advective case for an infinite channel of half-height r is provided here, the form of which will be shown analogous to results reported in the literature for convective cases of channels [48, 49] and horizontal cylinders [50].

The barometric formula describes the vertical pressure distribution in a gas. For an ideal gas in which the change in pressure is small, an approximate form of barometric pressure (14) applies.

$$\begin{aligned} \frac{P(h)}{P_{0}} \approx 1-\frac{\rho g h}{P_0} \end{aligned}$$
(14)

When gases of different densities \(\rho _1\) and \(\rho _2\) exist on either side of the interface, the net pressure force \(F_{\mathrm {net,P}}\) acting on the fluid element (per unit channel width) is given as

$$\begin{aligned} F_{\mathrm {net,P}}(z)=\left( \rho _{1}-\rho _{2}\right) gz{\mathrm {d}}z \end{aligned}$$
(15)

where z is a height measured from a reference position, selected here as the channel centerline for symmetry. Introducing the Boussinesq approximation (6), (15) becomes

$$\begin{aligned} F_{\mathrm {net,P}}(z)=\rho g'z{\mathrm {d}}z \end{aligned}$$
(16)

Viscosity is now considered as the balancing force against the pressure gradient. The viscous force \(F_{\tau }\) acting on one horizontal plane of a fluid element with an x-direction velocity profile u(z) is given by the expression

$$\begin{aligned} F_{\tau }(z)=L\tau (z)=L\mu \frac{{\mathrm {d}}u}{{\mathrm {d}}z} \end{aligned}$$
(17)

Producing net viscous force \(F_{\mathrm {net,\tau }}\) acting on the fluid element

$$\begin{aligned} F_{\mathrm {net,\tau }} =L\mu \left( \left. \frac{{\mathrm {d}}u}{{\mathrm {d}}z}\right| _{z+{\mathrm {d}}z} -\left. \frac{{\mathrm {d}}u}{{\mathrm {d}}z}\right| _{z}\right) \approx L\mu \frac{{\mathrm {d}}^2u}{{\mathrm {d}}z^2}{\mathrm {d}}z \end{aligned}$$
(18)

In (18), the approximate solution is obtained from a two term Taylor expansion of the velocity gradient.

Combining (16) and (18) produces an expression for the combined net force \(F_{\mathrm {net}}\) acting on a fluid element.

$$\begin{aligned} F_{\mathrm {net}}(z)=\left( \rho g'z+L\mu \frac{{\mathrm {d}}^2u}{{\mathrm {d}}z^2}\right) {\mathrm {d}}z \end{aligned}$$
(19)

At steady state, the net force on each fluid element must equal zero. Applying this condition, the expression can be rearranged to the form of the Euler–Cauchy equation

$$\begin{aligned} \frac{{\mathrm {d}}^2u}{{\mathrm {d}}z^2}=-\frac{\rho g'}{\mu L}z \end{aligned}$$
(20)

with the general solution

$$\begin{aligned} u(z)=-\frac{\rho g'z^3}{6\mu L}+C_2z+C_1 \end{aligned}$$
(21)

Applying the no-slip boundary conditions at the extents of the channel to solve for \(C_1\) and \(C_2\), the steady-state velocity profile can be found

$$\begin{aligned} u(z)=-\frac{\rho g'z^3}{6\mu L}+\frac{\rho g'r^2z}{6\mu L} \end{aligned}$$
(22)

or defining a non-dimensional position \(\xi =z/r\)

$$\begin{aligned} u(\xi )=\frac{\rho g'r^3}{6\mu L}\left( \xi -\xi ^3\right) \end{aligned}$$
(23)

This cubic the velocity distribution is consistent with the functional form presented by Birikh [48] as the motion of a homogeneous fluid subjected to a linearly varying body force. A more direct parallel to literature results can be seen in the solution to thermally driven free convection in the same geometry (24), reported by Bontoux [49]

$$\begin{aligned} u^*_{\mathrm {fc}}=\frac{1}{6}k_{1}{\mathrm {Ra}}\left( \xi -\xi ^3\right) \end{aligned}$$
(24)

Here, \(u^*_{\mathrm {fc}}\equiv ur/2\kappa \) is the dimensionless free convection velocity and \(\kappa \) is the thermal diffusivity. The Rayleigh number, Ra, describes a ratio of buoyancy and momentum to viscosity and thermal diffusivity, the driving forces for free convection. The constant \(k_1\) is reported to a first-order approximation as \(k_1\approx r/L\).

Equation 23 can be transformed by defining a dimensionless advective velocity \(u^*\equiv ur/\nu \), where \(\nu \) is the kinematic viscosity, and introducing the \(k_1\approx r/L\) approximation

$$\begin{aligned} u^*(\xi )=\frac{1}{6}k_1\left[ \frac{g'r^3}{\nu ^2}\right] \left( \xi -\xi ^3\right) \end{aligned}$$
(25)

The square bracketed term in (25) is recognized as the Archimedes number, Ar, under the Boussinesq approximation. Making this substitution into the velocity equation, the dimensionless gravity current velocity can be expressed as

$$\begin{aligned} u^*(\xi )=\frac{1}{6}k_{1}{\mathrm {Ar}}\left( \xi -\xi ^3\right) \end{aligned}$$
(26)

This result follows exactly the Bontoux form for natural convection, with the replacement of Ra with Ar as the driving force and \(\kappa \) with \(\nu \) in the velocity non-dimensionalization.

Through mathematical treatment beyond the scope of this work, Bejan and Tien [50] derive an analytical solution for free convection flow in a horizontal cylinder, producing the result

$$\begin{aligned} u^*_{\mathrm {fc,cyl}}=\frac{1}{8}k_{1}{\mathrm {Ra}}\left( \xi -\xi ^3\right) , \end{aligned}$$
(27)

where dimensionless velocity \(u^*_{\mathrm {fc,cyl}}\) is defined as in (24) and \(k_1\) shares the same approximate solution. Here, it is seen that the functional scaling is identical in the channel and cylinder cases. Based on this result and the direct analogy between the free convection and advective case of interest here, it can be reasonably expected that the functional form of velocity is independent of the choice in geometry between a simple channel and horizontal cylinder.

Returning to the dimensional form of velocity profile (23), the maximum front velocity can be evaluated to exist at position \(\xi =\pm \sqrt{1/3}\) with magnitude

$$\begin{aligned} u_{\mathrm {max}}=0.385\left( \frac{\rho g'r^3}{6\mu L}\right) \end{aligned}$$
(28)

This form provides explicit scaling for the mixing velocity induced by a gravity current, which is used in interpreting experimental results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susa, A.J., Davidson, D.F. & Hanson, R.K. Gravity-current-induced test gas stratification and its prevention in constrained reaction volume shock-tube experiments. Shock Waves 29, 969–984 (2019). https://doi.org/10.1007/s00193-019-00894-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00894-3

Keywords

Navigation