Skip to main content
Log in

Review on hydrodynamic instabilities of a shocked gas layer

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Hydrodynamic instabilities induced by a shock wave can be observed in both natural phenomena and engineering applications, and are frequently employed to study gas dynamics, vortex dynamics, and turbulence. Controlling these instabilities is very desirable, but remains a challenge in applications such as inertial confinement fusion. The field of “shock-gas-layer interaction” has experienced rapid development, driven by advances in experimental and numerical techniques as well as theoretical understanding. This domain has uncovered a diverse array of wave patterns and hydrodynamic instabilities, such as reverberating waves, feedthrough, abnormal and freeze-out Richtmyer-Meshkov instability, among others. Studies have shown that it is possible to suppress these instabilities by appropriately configuring a gas layer. Here we review the recent progress in theories, experiments, and simulations of shock-gas-layer interactions, and the feedthrough mechanism, the reverberating waves and their induced additional instabilities, as well as the convergent geometry and reshock effects, are focused. The conditions for suppressing hydrodynamic instabilities are summarized. The review concludes by highlighting the challenges and prospects for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Rayleigh, Proc. London Math. Soc. s1–14, 170 (1882).

    Article  Google Scholar 

  2. G. Taylor, Proc. R. Soc. Lond. A 201, 192 (1950).

    Article  ADS  Google Scholar 

  3. Y. Zhou, T. T. Clark, D. S. Clark, S. Gail Glendinning, M. Aaron Skinner, C. M. Huntington, O. A. Hurricane, A. M. Dimits, and B. A. Remington, Phys. Plasmas 26, 080901 (2019).

    Article  ADS  Google Scholar 

  4. R. D. Richtmyer, Comm. Pure Appl. Math. 13, 297 (1960).

    Article  MathSciNet  Google Scholar 

  5. E. E. Meshkov, Fluid Dyn. 4, 101 (1969).

    Article  ADS  Google Scholar 

  6. Y. Zhou, R. J. R. Williams, P. Ramaprabhu, M. Groom, B. Thornber, A. Hillier, W. Mostert, B. Rollin, S. Balachandar, P. D. Powell, A. Mahalov, and N. Attal, Phys. D 423, 132838 (2021).

    Article  Google Scholar 

  7. D. H. Sharp, Phys. D 12, 3 (1984).

    Article  Google Scholar 

  8. M. Brouillette, Annu. Rev. Fluid Mech. 34, 445 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Boffetta, and A. Mazzino, Annu. Rev. Fluid Mech. 49, 119 (2017).

    Article  ADS  Google Scholar 

  10. Y. Zhou, Phys. Rep. 720–722, 1 (2017).

    ADS  Google Scholar 

  11. Y. Zhou, Phys. Rep. 723–725, 1 (2017).

    ADS  Google Scholar 

  12. Z. Zhai, L. Zou, Q. Wu, and X. Luo, Proc. Inst. Mech. Eng. C 232, 2830 (2018).

    Article  Google Scholar 

  13. L. Liu, Y. Liang, J. Ding, N. Liu, and X. Luo, J. Fluid Mech. 853, R2 (2018).

    Article  ADS  Google Scholar 

  14. Y. Liang, Z. Zhai, J. Ding, and X. Luo, J. Fluid Mech. 872, 729 (2019).

    Article  ADS  Google Scholar 

  15. Y. Liang, L. Liu, Z. Zhai, J. Ding, T. Si, and X. Luo, J. Fluid Mech. 928, A37 (2021).

    Article  ADS  Google Scholar 

  16. S. T. Weir, E. A. Chandler, and B. T. Goodwin, Phys. Rev. Lett. 80, 3763 (1998).

    Article  ADS  Google Scholar 

  17. K. Shigemori, H. Azechi, M. Nakai, T. Endo, T. Nagaya, and T. Yamanaka, Phys. Rev. E 65, 045401 (2002).

    Article  ADS  Google Scholar 

  18. S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, S. Glenzer, A. V. Hamza, S. P. Hatchett, M. C. Herrmann, D. E. Hinkel, D. D. Ho, H. Huang, O. S. Jones, J. Kline, G. Kyrala, O. L. Landen, B. J. MacGowan, M. M. Marinak, D. D. Meyerhofer, J. L. Milovich, K. A. Moreno, E. I. Moses, D. H. Munro, A. Nikroo, R. E. Olson, K. Peterson, S. M. Pollaine, J. E. Ralph, H. F. Robey, B. K. Spears, P. T. Springer, L. J. Suter, C. A. Thomas, R. P. Town, R. Vesey, S. V. Weber, H. L. Wilkens, and D. C. Wilson, Phys. Plasmas 18, 051001 (2011).

    Article  ADS  Google Scholar 

  19. A. N. Simakov, D. C. Wilson, S. A. Yi, J. L. Kline, D. S. Clark, J. L. Milovich, J. D. Salmonson, and S. H. Batha, Phys. Plasmas 21, 022701 (2014).

    Article  ADS  Google Scholar 

  20. T. R. Desjardins, C. A. Di Stefano, T. Day, D. Schmidt, E. C. Merritt, F. W. Doss, K. A. Flippo, T. Cardenas, B. DeVolder, P. Donovan, S. Edwards, F. Fierro, R. Gonzales, L. Goodwin, C. Hamilton, T. Quintana, R. Randolph, A. M. Rasmus, T. Sedillo, C. Wilson, and L. Welser-Sherrill, High Energy Density Phys. 33, 100705 (2019).

    Article  Google Scholar 

  21. J. L. Milovich, P. Amendt, M. Marinak, and H. Robey, Phys. Plasmas 11, 1552 (2004).

    Article  ADS  Google Scholar 

  22. X. Qiao, and K. Lan, Phys. Rev. Lett. 126, 185001 (2021).

    Article  ADS  Google Scholar 

  23. E. Ott, Phys. Rev. Lett. 29, 1429 (1972).

    Article  ADS  Google Scholar 

  24. K. O. Mikaelian, Phys. Rev. A 26, 2140 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. K. O. Mikaelian, Phys. Rev. A 31, 410 (1985).

    Article  ADS  Google Scholar 

  26. K. O. Mikaelian, Phys. Rev. Lett. 65, 992 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  27. K. O. Mikaelian, Phys. Fluids 7, 888 (1995).

    Article  ADS  Google Scholar 

  28. K. O. Mikaelian, Phys. Fluids 8, 1269 (1996).

    Article  ADS  Google Scholar 

  29. K. O. Mikaelian, Phys. Fluids 17, 094105 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  30. J. W. Jacobs, D. G. Jenkins, D. L. Klein, and R. F. Benjamin, J. Fluid Mech. 295, 23 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  31. L. F. Wang, H. Y. Guo, J. F. Wu, W. H. Ye, J. Liu, W. Y. Zhang, and X. T. He, Phys. Plasmas 21, 122710 (2014).

    Article  ADS  Google Scholar 

  32. W. Liu, X. Li, C. Yu, Y. Fu, P. Wang, L. Wang, and W. Ye, Phys. Plasmas 25, 122103 (2018).

    Article  ADS  Google Scholar 

  33. Y. Liang, and X. Luo, J. Fluid Mech. 939, A16 (2022).

    Article  ADS  Google Scholar 

  34. Y. Liang, and X. Luo, J. Fluid Mech. 955, A40 (2023).

    Article  ADS  Google Scholar 

  35. Y. Liang, and X. Luo, J. Fluid Mech. 929, R3 (2021).

    Article  ADS  Google Scholar 

  36. J. W. Jacobs, D. L. Klein, D. G. Jenkins, and R. F. Benjamin, Phys. Rev. Lett. 70, 583 (1993).

    Article  ADS  Google Scholar 

  37. J. M. Budzinski, R. F. Benjamin, and J. W. Jacobs, Phys. Fluids 6, 3510 (1994).

    Article  ADS  Google Scholar 

  38. P. M. Rightley, P. Vorobieff, and R. F. Benjamin, Phys. Fluids 9, 1770 (1997).

    Article  ADS  Google Scholar 

  39. K. Prestridge, P. Vorobieff, P. M. Rightley, and R. F. Benjamin, Phys. Rev. Lett. 84, 4353 (2000).

    Article  ADS  Google Scholar 

  40. B. J. Balakumar, G. C. Orlicz, C. D. Tomkins, and K. P. Prestridge, Phys. Scr. T132, 014013 (2008).

    Article  ADS  Google Scholar 

  41. C. Tomkins, S. Kumar, G. Orlicz, and K. Prestridge, J. Fluid Mech. 611, 131 (2008).

    Article  ADS  Google Scholar 

  42. B. J. Balakumar, G. C. Orlicz, J. R. Ristorcelli, S. Balasubramanian, K. P. Prestridge, and C. D. Tomkins, J. Fluid Mech. 696, 67 (2012).

    Article  ADS  Google Scholar 

  43. S. Balasubramanian, G. C. Orlicz, K. P. Prestridge, and B. J. Balakumar, Phys. Fluids 24, 034103 (2012).

    Article  ADS  Google Scholar 

  44. G. C. Orlicz, B. J. Balakumar, C. D. Tomkins, and K. P. Prestridge, Phys. Fluids 21, 064102 (2009).

    Article  ADS  Google Scholar 

  45. K. Prestridge, G. Orlicz, S. Balasubramanian, and B. J. Balakumar, Phil. Trans. R. Soc. A. 371, 20120165 (2013).

    Article  ADS  Google Scholar 

  46. G. C. Orlicz, S. Balasubramanian, and K. P. Prestridge, Phys. Fluids 25, 114101 (2013).

    Article  ADS  Google Scholar 

  47. Y. Liang, L. Liu, Z. Zhai, T. Si, and C. Y. Wen, J. Fluid Mech. 886, A7 (2020).

    Article  ADS  Google Scholar 

  48. Y. Liang, and X. Luo, J. Fluid Mech. 920, A13 (2021).

    Article  ADS  Google Scholar 

  49. Y. Liang, and X. Luo, J. Fluid Mech. 933, A10 (2022).

    Article  ADS  Google Scholar 

  50. Z. Cong, X. Guo, T. Si, and X. Luo, Phys. Fluids 34, 104108 (2022).

    Article  ADS  Google Scholar 

  51. J. Ding, J. Li, R. Sun, Z. Zhai, and X. Luo, J. Fluid Mech. 878, 277 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Li, J. Ding, T. Si, and X. Luo, J. Fluid Mech. 884, R2 (2020).

    Article  ADS  Google Scholar 

  53. R. Sun, J. Ding, Z. Zhai, T. Si, and X. Luo, J. Fluid Mech. 902, A3 (2020).

    Article  ADS  Google Scholar 

  54. J. Ding, X. Deng, and X. Luo, Phys. Fluids 33, 102112 (2021).

    Article  ADS  Google Scholar 

  55. J. Li, J. Ding, X. Luo, and L. Zou, Phys. Fluids 34, 042123 (2022).

    Article  ADS  Google Scholar 

  56. R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996).

    Article  ADS  Google Scholar 

  57. M. R. Fan, Z. G. Zhai, T. Si, X. S. Luo, L. Y. Zou, and D. W. Tan, Sci. China-Phys. Mech. Astron. 55, 284 (2015).

    Article  ADS  Google Scholar 

  58. M. T. Henry de Frahan, P. Movahed, and E. Johnsen, Shock Waves 25, 329 (2015).

    Article  ADS  Google Scholar 

  59. Y. Li, R. Samtaney, and V. Wheatley, Matter Radiat. Extrem. 3, 207 (2018).

    Article  Google Scholar 

  60. K. O. Mikaelian, Phys. Rev. A 42, 3400 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  61. B. Romero, S. V. Poroseva, P. Vorobieff, and J. M. Reisner, Phys. Fluids 33, 064103 (2021).

    Article  ADS  Google Scholar 

  62. A. A. Gowardhan, and F. F. Grinstein, J. Turbul. 12, N43 (2011).

    Article  ADS  Google Scholar 

  63. R. P. Drake, High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics (Springer, Cham, 2018).

    Book  Google Scholar 

  64. Y. Aglitskiy, N. Metzler, M. Karasik, V. Serlin, A. L. Velikovich, S. P. Obenschain, A. N. Mostovych, A. J. Schmitt, J. Weaver, J. H. Gardner, and T. Walsh, Phys. Plasmas 13, 080703 (2006).

    Article  ADS  Google Scholar 

  65. R. V. Morgan, O. A. Likhachev, and J. W. Jacobs, J. Fluid Mech. 791, 34 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  66. R. V. Morgan, W. H. Cabot, J. A. Greenough, and J. W. Jacobs, J. Fluid Mech. 838, 320 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  67. Y. Liang, Z. Zhai, X. Luo, and C. Wen, J. Fluid Mech. 885, A42 (2020).

    Article  ADS  Google Scholar 

  68. H. Li, Z. He, Y. Zhang, and B. Tian, Phys. Fluids 31, 054102 (2019).

    Article  ADS  Google Scholar 

  69. Z. Wu, S. Huang, J. Ding, W. Wang, and X. Luo, Sci. China-Phys. Mech. Astron. 61, 114712 (2018).

    Article  ADS  Google Scholar 

  70. Z. G. Zhai, F. Zhang, Z. B. Zhou, J. C. Ding, and C. Y. Wen, Sci. China-Phys. Mech. Astron. 62, 1 (2019).

    Article  Google Scholar 

  71. Y. Liang, Z. G. Zhai, and X. S. Luo, Sci. China-Phys. Mech. Astron. 61, 1 (2018).

    Article  ADS  Google Scholar 

  72. Y. Liang, J. Ding, Z. Zhai, T. Si, and X. Luo, Phys. Fluids 29, 086101 (2017).

    Article  ADS  Google Scholar 

  73. Y. Liang, L. Liu, X. Luo, and C. Y. Wen, J. Fluid Mech. 963, A25 (2023).

    Article  ADS  Google Scholar 

  74. M. Lombardini, D. I. Pullin, and D. I. Meiron, J. Fluid Mech. 748, 85 (2014).

    Article  ADS  Google Scholar 

  75. M. Vetter, and B. Sturtevant, Shock Waves 4, 247 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Liang or Xisheng Luo.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Natural Science Foundation of China (Grant Nos. 91952205, and 11625211), and the Tamkeen under the NYU Abu Dhabi Research Institute (Grant No. CG002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Luo, X. Review on hydrodynamic instabilities of a shocked gas layer. Sci. China Phys. Mech. Astron. 66, 104701 (2023). https://doi.org/10.1007/s11433-023-2162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2162-0

Navigation