Skip to main content
Log in

Shock waves in sprays: numerical study of secondary atomization and experimental comparison

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Numerical modeling of the interaction between a cloud of water droplets and a planar shock wave is compared with experimental data. The mathematical model relies on an Eulerian description of the dispersed phase with the assumption of dilute flows. It is shown that the secondary atomization of the droplets strongly influences the structure of both the shock wave and the induced flow. After shock loading, the individual liquid components generate daughter droplets, and the overall interphase surface per unit volume undergoes strong variations which modify the pressure relaxation process towards a dynamic and thermal equilibrium state. The experimental data enable one to determine the best analytical formulation of the droplet number production rate. Models of droplet number production rate are compared in order to highlight this feature. The model based on the assumption of linear variation of droplet diameter with time gives the best agreement between the numerical results and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carrier, G.F.: Shock waves in a dusty gas. J. Fluid Mech. 4, 376–385 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Marble, F.E.: Dynamics of a gas containing small solid particles. Comb. Propuls. Fifth AGARD Colloq. 7, 175–213 (1963)

    Google Scholar 

  3. Rudinger, G.: Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7, 658–663 (1964)

    Article  MathSciNet  Google Scholar 

  4. Sommerfeld, M.: The unsteadiness of shock waves propagating through gas-particle mixtures. Exp. Fluids 3, 197–206 (1985)

    Article  Google Scholar 

  5. Outa, E., Tajima, K., Morii, H.: Experiments and analyses on shock waves propagating through a gas-particle mixture. Bull. Jpn. Soc. Mech. Eng. 19(130), 384–394 (1976)

    Article  Google Scholar 

  6. Chauvin, A., Jourdan, G., Daniel, E., Houas, L., Tosello, R.: Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium. Phys. Fluids 23, 113301 (2011)

  7. Kolev, N.I.: Multiphase Flow Dynamics 2. Mechanical and Thermal Interactions, Springer, 2 (2002)

  8. Verhagean, J.: Modélisation multiphasique d’écoulements et de phénomènes de dispersion issus d’explosion (2011), PhD manuscript, Aix-Marseille University, France

  9. Tyler, E.: Instability of liquid jets. Philos. Magazine Series 7 16(105), 504–518 (1933)

    Article  Google Scholar 

  10. Jourdan, G., Daniel, E., Houas, L., Tosello, R.: Attenuation of a shock wave passing through a cloud of water droplets. Shock Waves 20, 285–296 (2010)

    Article  MATH  Google Scholar 

  11. Daniel, E., Saurel, R., Loraud, J.C., Larini, M.: A multiphase formulation for two phase flows. Int. J. Num. Methods Fluid Flows 4, 269–280 (1994)

    Article  MATH  Google Scholar 

  12. Saurel, R., Daniel, E., Loraud, J.C.: Two phase flows: second order schemes and boundary conditions. AIAA J. 32(6), 1214–1221 (1994)

    Article  MATH  Google Scholar 

  13. Gelfand, B.E.: Droplet breakup phenomena in flows with velocity lag. Prog. Energy. Combust. Sci. 22, 201–265 (1996)

    Article  Google Scholar 

  14. Jourdan, G., Houas, L., Igra, O., Estivalezes, J.L., Devals, C., Meshkov, E.E.: Drag coefficient of a sphere in a non-stationary flow: new results. Proc. R. Soc. A 463(2088), 3323–3345 (2007)

    Article  Google Scholar 

  15. Ranz, W.E., Marshall, W.R.: Spray simulation—evaporation from drop. Chem. Eng. Prog. 48, 141–173 (1952)

    Google Scholar 

  16. Thevand, N., Daniel, E., Loraud, J.C.: On high resolution schemes for compressible viscous two-phase dilute flows. Int. J. Numer. Meth. Fluids 31, 681–702 (1999)

    Article  MATH  Google Scholar 

  17. Weber, C.: Zum zerfall eines flüssigkeitsstrahles. Z. Angew. Math. Mech. 11, 136–154 (1931)

    Article  MATH  Google Scholar 

  18. Guildenbecher, D.R., Lopez-Rivera, C., Sojka, P.E.: Secondary atomization. Exp. Fluids 46, 371–402 (2009)

    Article  Google Scholar 

  19. Hsiang, L.P., Faeth, G.M.: Drop deformation and breakup due to shock wave and steady disturbances. Int. J. Multiph. Flow 21, 545–560 (1995)

    Article  MATH  Google Scholar 

  20. Zeoli, N., Gu, S.: Numerical modelling of droplet break-up for gas atomization. Comput. Mat. Sci. 38(2), 282–292 (2006)

    Article  Google Scholar 

  21. Utheza, F., Saurel, R., Daniel, E., Loraud, J.C.: Multiphase flow dynamics 2. Droplet break-up through an oblique shock wave. Shock Waves 5, 265–273 (1996)

    Article  MATH  Google Scholar 

  22. Brodkey, R.S.: The Phenomena of Fluid Motions. Addison-Wesley, Reading Mass (1967)

    Google Scholar 

  23. Hsiang, L.P., Faeth, G.M.: Near-limit drop deformation and secondary breakup. Int. J. Multiph. Flow 18, 635–652 (1992)

    Article  MATH  Google Scholar 

  24. Ranger, A.A., Nicholls, J.A.: Aerodynamic shattering of liquid drops. AIAA 7, 285–290 (1969)

    Article  Google Scholar 

  25. Pilch, M., Erdman, C.A.: Use of break-up time data to predict the maximum size of stable fragment for acceleration induced breakup of a liquid drop. Int. J. Multiph. Flow 16, 741–757 (1987)

    Article  Google Scholar 

  26. Nigmatulin, R.I.: Dynamics of Multiphase Media. Hemisphere Publishing Company, New york (1991)

    Google Scholar 

  27. Joseph, D.D., Belanger, J., Beavers, G.S.: Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 25, 1263–1303 (1999)

    Article  MATH  Google Scholar 

  28. Chauvin, A., Jourdan, G., Daniel, E., Houas, L., Tosello, R.: Study of the interaction between a shock wave and a cloud of droplets, 28th International Symposium on Shock Waves, 2, 39-44, Springer Berlin Heidelberg (2012)

  29. Del Prete, E., Haas, J.-F., Chauvin, A., Jourdan, G., Chinnayya, A., Hadjadj, A.: Secondary atomization on two-phase shock wave structure, 28th International Symposium on Shock Waves, 2, 95-100, Springer Berlin Heidelberg (2012)

  30. Wierzba, A., Takayama, K.: Experimental investigation of the aerodynamic breakup of liquid drops. AIAA J. 26, 1329–1335 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DGA-Tn for supporting this study and Robert Tosello for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Daniel.

Additional information

Communicated by A. Hadjadj.

Appendix

Appendix

Although the numerical method is detailed in [16], it is important for this specific unsteady application to verify the grid independence of the solutions. Various meshes are tested on the simulations presented in Sect. 7. Mesh 1 corresponds to the one used in the present study (\(\mathrm{d}x =1\) mm), the cell is then divided by two (Mesh 2), and the third mesh \(\mathrm{d}x = 0.25\) mm (Mesh 3). The pressure evolution along the shock tube axis is plotted at time \(t=4.5\) ms for these different meshes. This pressure evolution shows that each wave pattern (expansion fan, shock wave, interaction with the droplet cloud) is computed in the same way regardless of the mesh used. The differences are quite negligible and cannot be seen on this figure (Fig. 15), and one can state that the results are independent of the grid.

Fig. 15
figure 15

Influence of the mesh size on the pressure evolution along the shock tube axis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauvin, A., Daniel, E., Chinnayya, A. et al. Shock waves in sprays: numerical study of secondary atomization and experimental comparison. Shock Waves 26, 403–415 (2016). https://doi.org/10.1007/s00193-015-0593-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0593-0

Keywords

Navigation