Skip to main content
Log in

Secondary atomization

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

When a drop is subjected to a surrounding dispersed phase that is moving at an initial relative velocity, aerodynamic forces will cause it to deform and fragment. This is referred to as secondary atomization. In this paper, the abundant literature on secondary atomization experimental methods, breakup morphology, breakup times, fragment size and velocity distributions, and modeling efforts is reviewed and discussed. Focus is placed on experimental and numerical results which clarify the physical processes that lead to breakup. From this, a consistent theory is presented which explains the observed behavior. It is concluded that viscous shear plays little role in the breakup of liquid drops in a gaseous environment. Correlations are given which will be useful to the designer, and a number of areas are highlighted where more work is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a :

drop acceleration (m/s2)

c :

velocity of sound (m/s)

D 10 :

drop or fragment arithmetic mean diameter (m)

D 30 :

drop or fragment volume mean diameter (m)

D 32 :

drop or fragment Sauter mean diameter (m)

D 43 :

drop or fragment de Brouckere mean diameter (m)

d 0 :

drop initial spherical diameter (m)

d core :

diameter of drop core at end of sheet-thinning breakup (m)

d cro :

drop cross-stream diameter (m)

d str :

drop stream-wise diameter (m)

F D :

aerodynamic drag force (kg m/s2)

F surf :

net surface force (kg m/s2)

F μ :

shear force (kg m/s2)

f 0(D):

fragment number PDF (1/m)

f 3(D):

fragment volume PDF (1/m)

K :

power-law fluid consistency index (kg/m s(2−n))

k :

wave number; 2π/λ (1/m)

MMD :

drop or fragment mass median diameter (m)

q :

net electrostatic charge (C)

q Ra :

Rayleigh charge limit (C)

t :

time (s)

U 0 :

initial relative velocity between drop and ambient fluid in main flow direction (m/s)

U core :

velocity of drop core relative to ambient fluid (m/s)

\( \bar{U}_{\text{f}} \) :

mean relative velocity of fragments in main flow direction (m/s)

V 0 :

initial relative velocity between drop and ambient fluid perpendicular to main flow direction (m/s)

\( \bar{V}_{\text{f}} \) :

mean relative velocity of fragments in cross-stream direction (m/s)

δ :

boundary layer thickness (m)

ε a :

electrical permittivity of ambient (C2/N m2)

λ :

wavelength (m)

λ (1) :

elastic fluid relaxation time (s)

μa :

ambient viscosity (kg/m s)

μ d :

drop viscosity (kg/m s)

μ eff :

power-law effective viscosity (kg/m s)

μ sol :

solvent shear viscosity (kg/m s)

ρ a :

ambient density (kg/m3)

ρ d :

drop density (kg/m3)

σ :

surface tension (kg/s2)

C D :

instantaneous coefficient of drag based on drop cross-stream diameter

\( \bar{C}_{\text{D}} \) :

average coefficient of drag based on initial spherical diameter

C D-sphere :

coefficient of drag of a solid sphere at a given Reynolds number

Eo cr :

Eötvös number at end of sheet-thinning breakup; \( {{a\left| {\rho_{\rm d} - \rho_{\rm a} } \right|d_{\text{core}}^{2} } \mathord{\left/ {\vphantom {{a\left| {\rho_{\rm d} - \rho_{\rm a} } \right|d_{\text{core}}^{2} } \sigma }} \right. \kern-\nulldelimiterspace} \sigma } \)

La :

Laplace number; La = Oh −2

Ma :

Mach number

N :

viscosity ratio; μ d/μ a

n :

power-law fluid flow behavior index

Oh :

Ohnesorge number; \( {{\mu_{\rm d} } \mathord{\left/ {\vphantom {{\mu_{\rm d} } {\sqrt {\rho_{\rm d} d_{0} \sigma } }}} \right. \kern-\nulldelimiterspace} {\sqrt {\rho_{\rm d} d_{0} \sigma } }} \)

Re :

gas-phase Reynolds number; \( {{\rho_{\rm a} U_{0} d_{0} } \mathord{\left/ {\vphantom {{\rho_{\rm a} U_{0} d_{0} } {\mu_{\rm a} }}} \right. \kern-\nulldelimiterspace} {\mu_{\rm a} }} \)

Re NN :

Reynolds number for a power-law fluid; ρU 2−n0 d n0 /K

T :

dimensionless time; \( tU_{0} \varepsilon^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-\nulldelimiterspace} 2}}} d_{0}^{ - 1} \)

T ini :

breakup initiation time

T tot :

total breakup time

We :

Weber number; \( {{\rho_{\rm a} U_{0}^{2} d_{0} } \mathord{\left/ {\vphantom {{\rho_{\rm a} U_{0}^{2} d_{0} } \sigma }} \right. \kern-\nulldelimiterspace} \sigma } \)

We c :

critical Weber number

We cOh→0 :

critical Weber number at low Ohnesorge number

We core :

Weber number of drop core at end of sheet-thinning breakup

We e− :

electrostatic Weber number; \( {{\rho_{\rm a} U_{0} d_{0}^{2} } \mathord{\left/ {\vphantom {{\rho_{\rm a} U_{0} d_{0}^{2} } {\left( {\sigma - {{q^{2} } \mathord{\left/ {\vphantom {{q^{2} } {8\pi^{2} \varepsilon_{\rm a} d_{0}^{3} }}} \right. \kern-\nulldelimiterspace} {8\pi^{2} \varepsilon_{\rm a} d_{0}^{3} }}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\sigma - {{q^{2} } \mathord{\left/ {\vphantom {{q^{2} } {8\pi^{2} \varepsilon_{\rm a} d_{0}^{3} }}} \right. \kern-\nulldelimiterspace} {8\pi^{2} \varepsilon_{\rm a} d_{0}^{3} }}} \right)}} \)

Wi :

Weissenberg number; \( {{\lambda^{(1)} U_{0} } \mathord{\left/ {\vphantom {{\lambda^{(1)} U_{0} } {d_{0} }}} \right. \kern-\nulldelimiterspace} {d_{0} }} \)

y :

non-dimensional displacement of drop equator; 1 − (d 0/d cro)2

ε :

density ratio; ρ d/ρ a

ω :

exponential growth factor

References

  • Aalburg C, van Leer B, Faeth GM (2003) Deformation and drag properties of round drops subjected to shock-wave disturbances. AIAA J 41(12):2371–2378

    Article  Google Scholar 

  • Apte SV, Gorokhovski M, Moin P (2003) LES of atomizing spray with stochastic modeling of secondary breakup. Int J Multiphase Flow 29:1503–1522

    Article  MATH  Google Scholar 

  • Arcoumanis C, Khezzar L, Whitelaw DS, Warren BCH (1994) Breakup of Newtonian and non-Newtonian Fluids in air jets. Exp Fluids 17(6):405–414

    Article  Google Scholar 

  • Arcoumanis C, Whitelaw DS, Whitelaw JH (1996) Breakup of droplets of Newtonian and non-Newtonian fluids. Atomization Spray 6:245–256

    Google Scholar 

  • Babinsky E, Sojka PE (2002) Modeling drop size distributions. Prog Energ Combust 28:303–329

    Article  Google Scholar 

  • Berthoumieu P, Carentz H, Villedieu P, Lavergne G (1999) Contribution to droplet breakup analysis. Int J Heat Fluid 20:492–498

    Article  Google Scholar 

  • Bird RB, Armstrong RRC, Hasseger O (1987) Dynamics of polymeric liquids. Wiley, New York

    Google Scholar 

  • Brodkey, RS (1967) Formation of drops and bubbles. In: The phenomena of fluid motions. Addison-Wesley, Reading

  • Cao XK, Sun ZG, Li WF, Liu HF, Yu ZH (2007) A new breakup regime for liquid drops identified in a continuous and uniform air jet flow. Phys Fluids 19(5):057103

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, London

    MATH  Google Scholar 

  • Chang CH, Liou MS (2007) A Robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme. J Comput Phys 225:840–873

    Article  MATH  MathSciNet  Google Scholar 

  • Chou WH, Faeth GM (1998) Temporal properties of secondary drop breakup in the bag breakup regime. Int J Multiphase Flow 24:889–912

    Article  MATH  Google Scholar 

  • Chou WH, Hsiang LP, Faeth GM (1997) Temporal properties of drop breakup in the shear breakup regime. Int J Multiphas Flow 23(4):651–669

    Article  MATH  Google Scholar 

  • Chryssakis CA, Assanis DN (2005) A secondary atomization model for liquid droplet deformation and breakup under high weber number conditions. In: ILASS Americas 18th annual conference on liquid atomization and spray systems, Irvine, CA, USA

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  • Cohen RD (1994) Effect of viscosity on drop breakup. Int J Multiphase Flow 20(1):211–216

    Article  Google Scholar 

  • Cousin J, Yoon SJ, Dumouchel C (1996) Coupling of classical linear theory and maximum entropy formalism for prediction of drop size distribution in sprays: application to pressure-swirl atomizers. Atomization Spray 6:601–622

    Google Scholar 

  • Dai Z, Faeth GM (2001) Temporal properties of secondary drop breakup in the multimode breakup regime. Int J Multiphase Flow 27:217–236

    Article  MATH  Google Scholar 

  • Duan RQ, Koshizuka S, Oka Y (2003a) Numerical and theoretical investigation of effect of density ratio on the critical weber number of droplet breakup. J Nucl Sci Technol 40(7):501–508

    Article  Google Scholar 

  • Duan RQ, Koshizuka S, Oka Y (2003b) Two-dimensional simulation of drop deformation and breakup at around the critical Weber number. Nucl Eng Des 225:37–48

    Article  Google Scholar 

  • Dumouchel C (2006) A new formulation of the maximum entropy formalism to model liquid spray drop-size distribution. Part Part Syst Char 23:468–479

    Article  Google Scholar 

  • Dumouchel C, Boyaval S (1999) Use of the maximum entropy formalism to determine drop size characteristics. Part Part Syst Char 16:177–184

    Article  Google Scholar 

  • Faeth GM, Hsiang LP, Wu PK (1995) Structure and breakup properties of sprays. Int J Multiphase Flow 21(Suppl): 99–127

    Article  MATH  Google Scholar 

  • Gelfand BE (1996) Droplet breakup phenomena in flows with velocity lag. Prog Energ Combust 22:201–265

    Article  Google Scholar 

  • Gelfand BE, Gubin SA, Kogarko SM, Komar SP (1975) Singularities of the breakup of viscous liquid droplets in shock waves. J Eng Phys 25(3):1140–1142

    Article  Google Scholar 

  • Gökalp I, Chauveau C, Morin C, Vieille B, Birouk M (2000) Improving droplet breakup and vaporization models by including high pressure and turbulence effects. Atomization Spray 10:475–510

    Google Scholar 

  • Gorokhovski M (2001) The stochastic Lagrangian model of drop breakup in the computation of liquid sprays. Atomization Spray 11:505–519

    Google Scholar 

  • Gorokhovski MA, Saveliev VL (2003) Analyses of Kolmogorov’s model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization. Phys Fluids 15(1):184–192

    Article  Google Scholar 

  • Guildenbecher DR, Sojka PE (2007) Secondary breakup of electrically charged Newtonian drops. In: Proceedings of IMECE2007, IMECE2007–4189

  • Han J, Tryggvason G (1999) Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Phys Fluids 11(12):3650–3667

    Article  MATH  Google Scholar 

  • Han J, Tryggvason G (2001) Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration. Phys Fluids 13(6):1554–1565

    Article  Google Scholar 

  • Helenbrook BT, Edwards CF (2002) Quasi-steady deformation and drag of uncontaminated liquid drops. Int J of Multiphas Flow 28(10):1631–1657

    Article  MATH  Google Scholar 

  • Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295

    Article  Google Scholar 

  • Hsiang LP, Faeth GM (1992) Near-limit drop deformation and secondary breakup. Int J Multiphas Flow 18(5):635–652

    Article  MATH  Google Scholar 

  • Hsiang LP, Faeth GM (1993) Drop properties after secondary breakup. Int J Multiphase Flow 19(5):721–735

    Article  MATH  Google Scholar 

  • Hsiang LP, Faeth GM (1995) Drop deformation and breakup due to shock wave and steady disturbances. Int J Multiphase Flow 21(4):545–560

    Article  MATH  Google Scholar 

  • Hwang SS, Liu Z, Reitz RD (1996) Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops. Atomization Spray 6:353–376

    Google Scholar 

  • Ibrahim EA, Yang HQ, Przekwas AJ (1993) Modeling of spray droplets deformation and breakup. J Propul Power 9(4):651–654

    Article  Google Scholar 

  • Igra D, Ogawa T, Takayama K (2002) A parametric study of water column deformation resulting from shock wave loading. Atomization Spray 12:577–591

    Article  Google Scholar 

  • Igra D, Takayama K (2001) Investigation of aerodynamic breakup of a cylindrical water droplet. Atomization Spray 11(2):167–185

    Google Scholar 

  • Joseph DD, Beavers GS, Funada T (2002) Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers. J Fluid Mech 453:109–132

    Article  MATH  Google Scholar 

  • Joseph DD, Belanger J, Beavers GS (1999) Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int J Multiphase Flow 25:1263–1303

    Article  MATH  Google Scholar 

  • Kalashnikov VN, Askarov AN (1989) Relaxation time of elastic stresses in liquids with small additions of soluble polymers of high molecular weights. J Eng Phys Thermophys 57:874–878

    Google Scholar 

  • Khosla S, Smith CE, Throckmorton RP (2006) Detailed understanding of drop atomization by gas crossflow using the volume of fluid method. Inl: ILASS Americas, 19th annual conference on liquid atomization and spray systems, Toronto, Canada

  • Koshizuka A, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421

    Google Scholar 

  • Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. J Fluid Mech 357:351–379

    Article  Google Scholar 

  • Lee CH, Reitz RD (1999) Modeling the effects of gas density on the drop trajectory and breakup size of high-speed liquid drops. Atomization Spray 9:497–517

    Google Scholar 

  • Lee CH, Reitz RD (2000) An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream. Int J Multiphase Flow 26:229–244

    Article  MATH  Google Scholar 

  • Lee CS, Kim HJ, Park SW (2004) Atomization characteristics and prediction accuracies of hybrid break-up models for a gasoline direct injection spray. P I Mech Eng D-J Aut 218(D9):1041–1053

    Article  Google Scholar 

  • Lee CS, Reitz RD (2001) Effect of liquid properties on the breakup mechanism of high-speed liquid drops. Atomization Spray 11:1–19

    Google Scholar 

  • Li X, Li M, Fu H (2005) Modeling the initial droplet size distribution in sprays based on the maximization of entropy generation. Atomization Spray 15:295–321

    Article  Google Scholar 

  • Liu AB, Mather D, Reitz RD (1993) Modeling the effect of drop drag and breakup on fuel sprays. In: SAE International congress and exposition, SAE 930072

  • Liu AB, Reitz RD (1993) Mechanisms of air-assisted liquid atomization. Atomization Spray 3:55–75

    Google Scholar 

  • Liu Z, Reitz RD (1997) An analysis of the distortion and breakup mechanisms of high speed liquid drops. Int J Multiphas Flow 23(4):631–650

    Article  MATH  Google Scholar 

  • López-Rivera C, Sojka PE (2008) Secondary breakup of non-Newtonian liquid drops. In: ILASS Europe 22nd European conference on liquid atomization and spray dystems, Como Lake, Italy

  • Matta JE, Tytus RP (1982) Viscoelastic breakup in a high velocity airstream. J Appl Polymer Sci 27:397–405

    Article  Google Scholar 

  • Matta JE, Tytus RP, Harris JL (1983) Aerodynamic atomization of polymeric solutions. Chem Eng Commun 19:191–204

    Article  Google Scholar 

  • Mugele RA, Evans HD (1951) Droplet size distribution in sprays. Ind Eng Chem 43:1317–1324

    Article  Google Scholar 

  • Nomura K, Koshizuka S, Oka Y, Obata H (2001) Numerical analysis of droplet breakup behavior using particle method. J Nucl Sci Technol 38(12):1057–1064

    Article  Google Scholar 

  • O’Donnell BJ, Helenbrook BT (2005) Drag on ellipsoids at finite Reynolds numbers. Atomization Spray 15:363–375

    Article  Google Scholar 

  • O’Rourke PJ, Amsden AA (1987) The TAB method for numerical calculation of spray droplet breakup. SAE Paper No 872089

  • Ortiz C, Joseph DD, Beavers GS (2004) Acceleration of a liquid drop suddenly exposed to a high-speed airstream. Int J Multiphas Flow 30:217–224

    Article  MATH  Google Scholar 

  • Park JH, Yoon Y, Hwang SS (2002) Improved TAB model for prediction of spray droplet deformation and breakup. Atomization Spray 12:387–401

    Article  Google Scholar 

  • Park SW, Kim S, Lee CS (2006) Effect of mixing ratio of biodiesel on breakup mechanisms of monodispersed droplets. Energy Fuels 20(4):1709–1715

    Article  Google Scholar 

  • Park SW, Lee CS (2004) Investigation of atomization and evaporation characteristics of high-pressure injection diesel spray using Kelvin–Helmholtz instability/droplet deformation and break-up competition model. P I Mech Eng D-J Aut 218:767–777

    Article  Google Scholar 

  • Pham TL, Heister SD (2002) Spray modeling using Lagrangian droplet tracking in a homogeneous flow model. Atomization Spray 12:687–707

    Article  Google Scholar 

  • Pilch M, Erdman CA (1987) Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiphase Flow 13(6):741–757

    Article  Google Scholar 

  • Prevish TD, Santavicca DA (1998) Turbulent breakup of hydrocarbon droplets at elevated pressures. In: ILASS Americas, 11th annual conference on liquid atomization and spray systems, Sacramento, CA, USA

  • Quan S, Schmidt DP (2006) Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow. Phy Fluids 18(10):102103

    Google Scholar 

  • Ranger AA, Nicholls JA (1969) Aerodynamic shattering of liquid drops. AIAA J 7(2):285–290

    Article  Google Scholar 

  • Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Magaz 14:184–186

    Google Scholar 

  • Schmelz F, Walzel P (2003) Breakup of liquid droplets in accelerated gas flows. Atomization Spray 13:357–372

    Article  Google Scholar 

  • Sehgal BR, Nourgaliev RR, Dinh TN (1999) Numerical simulation of droplet deformation and break-up by Lattice–Boltzmann method. Prog Nucl Energ 34(4):471–488

    Article  Google Scholar 

  • Shibata K, Koshizuka S, Oka Y (2004) Numerical analysis of jet breakup behavior using particle method. J Nucl Sci Technol 41(7):715–722

    Article  Google Scholar 

  • Shraiber AA, Podvysotsky AM, Dubrovsky VV (1996) Deformation and breakup of drops by aerodynamic forces. Atomization Spray 6:667–692

    Google Scholar 

  • Shrimpton JS, Laoonual Y (2006) Dynamics of electrically charged transient evaporating sprays. I J Numer Meth Eng 67:1063–1081

    Article  MATH  Google Scholar 

  • Simmons HC (1977a) The correlation of drop-size distributions in fuel nozzle sprays part I: the drop-size/volume-fraction distribution. J Eng Power-T ASME 99(3):309–314

    Google Scholar 

  • Simmons HC (1977b) The correlation of drop-size distributions in fuel nozzle sprays part II: the drop-size/number distribution. J Eng Power-T ASME 99(3):315–319

    Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comp Phys 114:146–159

    Article  MATH  Google Scholar 

  • Tanner FX (1997) Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays. SAE Trans J Eng 106:127–140

    Google Scholar 

  • Tarnogrodzki A (1993) Theoretical prediction of the critical Weber number. Int J Multiphase Flow 19(2):329–336

    Article  MATH  Google Scholar 

  • Taylor GI (1950) The The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. P Royal Soc A Math Phys 201:192–196

    Article  MATH  Google Scholar 

  • Taylor GI (1963) The shape and acceleration of a drop in a high-speed air stream. In: Batchelor GK (ed) The scientific papers of GI Taylor, vol III. University Press, Cambridge

  • Theofanous TG, Li GJ, Dinh TN (2004) Aerobreakup in rarefied supersonic gas flows. J Fluid Eng T ASME 126:516–527

    Article  Google Scholar 

  • Trinh HP, Chen CP (2006) Development of liquid jet atomization and breakup models including turbulence effects. Atomization Spray 16:907–932

    Article  Google Scholar 

  • Trinh HP, Chen CP, Balasubramanyam MS (2007) Numerical simulation of liquid jet atomization including turbulence effects. J Eng Gas Turb Power 129:920–928

    Article  Google Scholar 

  • Tryggvason G (1997) Computational investigation of atomization. Contract Number F49620-96-1-0356, Report Number A915353

  • Wadhwa AR, Abraham J, Magi V (2005) Hybrid compressible-incompressible numerical method for transient drop-gas flows. AIAA J 43(9):1974–1983

    Article  Google Scholar 

  • Wadhwa AR, Magi V, Abraham J (2007) Transient deformation and drag of decelerating drops in axisymmetric flows. Phys Fluids 19

  • Weber C (1931) The breakup of liquid jets. Zeits Angew Math Mech 11:136–154

    Article  MATH  Google Scholar 

  • Wert KL (1995) A rationally-based correlation of mean fragment size for drop secondary breakup. Int J Multiphase Flow 21(6):1063–1071

    Article  MATH  Google Scholar 

  • Wierzba A, Takayama K (1988) Experimental investigation of the aerodynamic breakup of liquid drops. AAIA J 26(11):1329–1335

    Article  Google Scholar 

  • Wilcox JD, June RK, Brown HA, Kelley RC (1961) The retardation of drop breakup in high-velocity airstreams by polymeric modifiers. J Appl Polymer Sci 5(13):1–6

    Article  Google Scholar 

  • Zaleski S, Li J, Succi S (1995) Two-dimensional Navier–Stokes simulation of deformation and breakup of liquid patches. Phys Rev Lett 75(2):244–247

    Article  Google Scholar 

  • Zhou W, Zhao T, Wu T, Yu Z (2000) Application of fractal geometry to atomization process. Chem Eng J 78:193–197

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Stephen Heister of Purdue University, Dr. Sachin Khosla of the CFD Research Corporation, Prof. Rolf Reitz of the University of Wisconsin, and Prof. David Schmidt of the University of Massachusetts-Amherst for their stimulating discussions and guidance during the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Guildenbecher.

Additional information

This material is based upon work supported under a National Science Foundation Graduate Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. Secondary atomization. Exp Fluids 46, 371–402 (2009). https://doi.org/10.1007/s00348-008-0593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0593-2

Keywords

Navigation