Skip to main content
Log in

Vorticity dynamics after the shock–turbulence interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756:R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, \(M_{s}\), up to \(M_{s}=10\). It is shown that, as \(M_{s}\) increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ribner, H.S.: Convection of a pattern of vorticity through a shock wave. NACA TR-1164 (1954)

  2. Moore, F.K.: Unsteady oblique interaction of a shock wave with a plane disturbance. NACA TR-1165 (1954)

  3. Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993)

    Article  Google Scholar 

  5. Jamme, S., Cazalbou, J.B., Torres, F., Chassaing, P.: Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow Turb. Comb. 68(3), 277–268 (2002)

    Article  MATH  Google Scholar 

  6. Barre, S., Alem, D., Bonnet, J.P.: Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34, 968–974 (1996)

    Article  Google Scholar 

  7. Lee, S., Lele, S.K., Moin, P.: Interaction of isotropic turbulence with shock waves: Effect of shock strength. J. Fluid Mech. 340, 225–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agui, J.H., Briassulis, G., Andreopoulos, Y.: Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech. 524, 143–195 (2005)

    Article  MATH  Google Scholar 

  9. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009)

    Article  MATH  Google Scholar 

  10. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds- and Mach- number effects in canonical shock-turbulence interaction. J. Fluid Mech. 717, 293–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756, R1 (2014)

    Article  Google Scholar 

  12. Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22, 116101 (2010)

    Article  Google Scholar 

  13. Kovasznay, L.S.G.: Turbulence in supersonic flows. J. Aero. Sci. 20, 657–674 (1953)

    Article  MATH  Google Scholar 

  14. Blaisdell, G.A., Mansour, N.N., Reynolds, W.C.: Compressibility effects on the growth and structure of homogeneous turbulent shear flows. J. Fluid Mech. 256, 443–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Livescu, D., Jaberi, F.A., Madnia, C.K.: The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 35–66 (2002)

    Article  MATH  Google Scholar 

  16. Dimotakis, P.E.: The mixing transition in turbulent flows. J. Fluid Mech. 409, 69–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comp. Phys. 229, 1213–1237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Livescu, D., Mohd-Yusof, J., Petersen, M.R., Grove, J.W.: CFDNS: a computer code for direct numerical simulation of turbulent flows. Technical report, Los Alamos National Laboratory, LA-CC-09-100 (2009)

  19. Kevlahan, N.K., Mahesh, K., Lee, S.: Evolution of the shock front and turbulence structures in the shock/turbulence interaction. Proceedings of Summer Program, CTR, pp. 277–292 (1992)

  20. Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys. Fluids 10, 2260–2267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12, 1189–1209 (2000)

    Article  MATH  Google Scholar 

  22. Ashurst, W.T., Kerstein, A.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)

    Article  Google Scholar 

  23. Vincent, A., Meneguzzi, M.: The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1–20 (1991)

    Article  MATH  Google Scholar 

  24. Kerr, R.M.: High-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)

    Article  MATH  Google Scholar 

  25. Nomura, K.K., Post, G.K.: The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech. 377, 65–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nomura, K.K., Elgobashi, S.E.: The structure of inhomogeneous turbulence in variable density nonpremixed flames. Theor. Comput. Fluid Dyn. 5, 153–176 (1993)

    Article  MATH  Google Scholar 

  27. Sinha, K.: Evolution of enstrophy in shock/homogeneous turbulence interaction. J. Fluid Mech. 707, 74–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hamman, C.W., Klewicki, J.C., Kirby, R.M.: On the Lamb vector divergence in Navier-Stokes flows. J. Fluid Mech. 610, 261–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: Mathematical Aspects of Fluid Mechanics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  30. Liu, L.Q., Wu, J.Z., Shi, Y.P., Zhu, J.Y.: A dynamic counterpart of Lamb vector in viscous compressible aerodynamics. Fluid Dyn. Res. 46, 061417 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the US Department of Energy NNSA under Contract No. DE-AC52-06NA25396. Computational resources were provided by the LANL Institutional Computing (IC) Program and Sequoia Capability Computing Campaign at Lawrence Livermore National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Livescu.

Additional information

Communicated by A. Podlaskin.

This paper is based on work that was presented at the 21st International Symposium on Shock Interaction, Riga, Latvia, August 3–8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livescu, D., Ryu, J. Vorticity dynamics after the shock–turbulence interaction. Shock Waves 26, 241–251 (2016). https://doi.org/10.1007/s00193-015-0580-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0580-5

Keywords

Navigation