Skip to main content
Log in

Effects of Compressibility and Shock-Wave Interactions on Turbulent Shear Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Compressibility effects are present in many practical turbulent flows, ranging from shock-wave/boundary-layer interactions on the wings of aircraft operating in the transonic flight regime to supersonic and hypersonic engine intake flows. Besides shock wave interactions, compressible flows have additional dilatational effects and, due to the finite sound speed, pressure fluctuations are localized and modified relative to incompressible turbulent flows. Such changes can be highly significant, for example the growth rates of mixing layers and turbulent spots are reduced by factors of more than three at high Mach number. The present contribution contains a combination of review and original material. We first review some of the basic effects of compressibility on canonical turbulent flows and attempt to rationalise the differing effects of Mach number in different flows using a flow instability concept. We then turn our attention to shock-wave/boundary-layer interactions, reviewing recent progress for cases where strong interactions lead to separated flow zones and where a simplified spanwise-homogeneous problem is amenable to numerical simulation. This has led to improved understanding, in particular of the origin of low-frequency behaviour of the shock wave and shown how this is coupled to the separation bubble. Finally, we consider a class of problems including side walls that is becoming amenable to simulation. Direct effects of shock waves, due to their penetration into the outer part of the boundary layer, are observed, as well as indirect effects due to the high convective Mach number of the shock-induced separation zone. It is noted in particular how shock-induced turning of the detached shear layer results in strong localized damping of turbulence kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39(8), 1517–1531 (2001)

    Article  Google Scholar 

  2. Birch, S.F., Eggers, J.M.: A critical review of the experimental data for developed free turbulent shear layers. Tech. Rep., 32 (1973). NASA-SP

  3. Brown, G.L., Roshko, A.: Density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)

    Article  Google Scholar 

  4. Bradshaw, P.: Compressible turbulent shear layers. Ann. Rev. Fluid Mech. 9, 33–54 (1977)

    Article  MATH  Google Scholar 

  5. Babinsky, H., Harvey, J.: Shock Wave-Boundary-Layer Interactions, Cambridge (2011)

  6. Clemens, N.T., Narayanaswamy, V.: Low frequency unsteadiness of shock wave/turbulent boundary layer interactions. Ann. Rev. Fluid Mech. 46, 469–492 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gatski, T.B., Bonnet, J.P.: Compressibility, Turbulence and High-Speed Flow. Academic Press (2009)

  8. Smits, A.J., Dussauge, J.-P.: Turbulent Shear Layers in Supersonic Flow, 3rd edn. Springer (2006)

  9. Gaitonde, D.V.: Progress in shock wave/boundary layer interactions. Prog. Aero. Sci. 72(SI), 80–99 (2015)

    Article  Google Scholar 

  10. Souverein, L.J., Dupont, P., Debieve, J.-F., Dussauge, J.-P., van Oudheusden, B.W., Scarano, F.: Effect of Interaction Strength on Unsteadiness in Turbulent Shock-Wave-Induced Separations. AIAA J. 48(7), 1480–1493 (2010)

    Article  Google Scholar 

  11. Giepman, R.H.M., Schrijer, F.F.J., van Oudheusden, B.W.: High-resolution PIV measurements of a transitional shock wave-boundary layer interaction. Exp. Fluids 56(6), 1–20 (2015)

    Article  Google Scholar 

  12. Adams, N.A.: Direct numerical simulation of turbulent compression ramp flow. Theor. Comp. Fluid Dyn. 12(2), 109–129 (1998)

    Article  MATH  Google Scholar 

  13. Adams, N.A.: Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Re-theta=1685. J. Fluid Mech. 420, 47–83 (2000)

    Article  MATH  Google Scholar 

  14. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comp. Phys. 150(1), 199–238 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock turbulence interaction. J. Comp. Phys. 152(2), 517–549 (1999)

    Article  MATH  Google Scholar 

  16. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjoegreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comp. Phys. 229(4), 1213–1237 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gerritsen, M., Olsson, P.: Designing an efficient solution strategy for fluid flows. 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations. J. Comp. Phys. 129(2), 245–262 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sandham, N.D., Li, Q., Yee, H.C.: Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comp. Phys. 178(2), 307–322 (2002)

    Article  MATH  Google Scholar 

  19. Pirozzoli, S.: Numerical Methods for High-Speed Flows. In: Davis, S.H., Moin, P. (eds.) Annual Review of Fluid Mechanics, vol. 43, pp 163–194. Annual Reviews Inc. (2011)

  20. Garnier, E., Adams, N.A., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)

  21. Vreman, B.: Direct and Large-Eddy Simulation of the Compressible Mixing Layer. PhD Thesis. University of Twente, Enschede (1995)

  22. Hickel, S., Egerer, C.P., Larsson, J.: Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction. Phys. Fluids 26(10), 106101 (2014)

    Article  Google Scholar 

  23. Papamoschou, D., Roshko, A.: The compressible turbulent shear-layer - an experimental-study. J. Fluid Mech. 197, 453–477 (1988)

    Article  Google Scholar 

  24. Slessor, M.D., Bond, C.L., Dimotakis, P.E.: Turbulent shear-layer mixing at high reynolds numbers: effects of inflow conditions. J. Fluid Mech. 376, 115–138 (1998)

    Article  MATH  Google Scholar 

  25. Vreman, A.W., Sandham, N.D., Luo, K.H.: Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235–258 (1996)

    Article  MATH  Google Scholar 

  26. Breidenthal, R.E.: Sonic eddy - a model for compressible turbulence. AIAA J. 30(1), 101–104 (1992)

    Article  MATH  Google Scholar 

  27. Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002)

    Article  MATH  Google Scholar 

  28. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. McGraw-Hill (2006)

  29. Sarkar, S., Erlebacher, G., Hussaini, M.Y., Kreiss, H.O.: The analysis and modeling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991)

    Article  MATH  Google Scholar 

  30. Yoder, D.A., DeBonis, J.R., Georgiadis, N.J.: Modeling of turbulent free shear flows. Comp. Fluids 117, 212–232 (2015)

    Article  MathSciNet  Google Scholar 

  31. Barre, S., Bonnet, J.P.: Detailed experimental study of a highly compressible supersonic turbulent plane mixing layer and comparison with most recent DNS results: Towards an accurate description of compressibility effects in supersonic free shear flows. Int. J. Heat Fluid Flow 51, 324–334 (2015)

    Article  Google Scholar 

  32. Duan, L., Martin, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 25–59 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Touber, E., Sandham, N.D.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theo. Comp. Fluid Dyn. 23(2), 79–107 (2009)

    Article  MATH  Google Scholar 

  34. Maeder, T., Adams, N.A., Kleiser, L.: Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187–216 (2001)

    Article  MATH  Google Scholar 

  35. Pirozzoli, S., Grasso, F., Gatski, T.B.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M =2.25. Phys. Fluids 16(3), 530–545 (2004)

    Article  MATH  Google Scholar 

  36. Huang, P.G., Coleman, G.N., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)

    Article  MATH  Google Scholar 

  37. Sarkar, S.: The stabilizing effect of compressibility in turbulent shear-flow. J. Fluid Mech. 282, 163–186 (1995)

    Article  MATH  Google Scholar 

  38. Redford, J.A., Sandham, N.D., Roberts, G.T.: Numerical simulations of turbulent spots in supersonic boundary layers: Effects of Mach number and wall temperature. Prog. Aerosp. Sci. 52(SI), 67–79 (2012)

    Article  Google Scholar 

  39. Fischer, M.C.: Spreading of a turbulent disturbance. AIAA J. 10, 957–959 (1972)

    Article  Google Scholar 

  40. Krishnan, L., Sandham, N.D.: Effect of Mach number on the structure of turbulent spots. J. Fluid Mech. 566, 225–234 (2006)

    Article  MATH  Google Scholar 

  41. Jocksch, A., Kleiser, L.: Growth of turbulent spots in high-speed boundary layers on a flat plate. Int. J. Heat Fluid Flow 29(6), 1543–1557 (2008)

    Article  Google Scholar 

  42. Gad-El-Hak, M., Blackwelder, R.F., Riley, J.J.: On the growth of turbulent regions in laminar boundary-layers. J. Fluid Mech. 110, 73–95 (1981)

    Article  Google Scholar 

  43. Brinkerhoff, J.R., Yaras, M.I.: Numerical investigation of the generation and growth of coherent flow structures in a triggered turbulent spot. J. Fluid Mech. 759, 257–294 (2014)

    Article  Google Scholar 

  44. Casper, K.M., Beresh, S.J., Schneider, S.P.: Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer. J. Fluid Mech. 756, 1058–1091 (2014)

    Article  Google Scholar 

  45. Monkewitz, P.A., Huerre, P.: Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25(7), 1137–1143 (1982)

    Article  Google Scholar 

  46. Gaster, M., Kit, E., Wygnanski, I.: Large-scale structures in a forced turbulent mixing layer. J. Fluid Mech. 150, 23–39 (1985)

    Article  Google Scholar 

  47. Morris, P.J., Giridharan, M.G., Lilley, G.M.: On the turbulent mixing of compressible free shear layers. Proc. Roy. Soc. Math. Phys. Sci. 431(1882), 219–243 (1990)

    Article  MATH  Google Scholar 

  48. Suzuki, T., Colonius, T.: Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197–226 (2006)

    Article  MATH  Google Scholar 

  49. Ragab, S.A., Wu, J.L.: Linear instabilities in two-dimensional compressible mixing layers. Physics of Fluids A-Fluid Dynamics 1(6), 957–966 (1989)

    Article  Google Scholar 

  50. Sandham, N.D., Reynolds, W.C.: Compressible mixing layer - linear theory and direct simulation. AIAA J. 28(4), 618–624 (1990)

    Article  Google Scholar 

  51. Sandham, N.D., Reynolds, W.C.: Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133–158 (1991)

    Article  MATH  Google Scholar 

  52. Mayer, C.S.J., von Terzi, D.A., Fasel, H.F.: Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 5–42 (2011)

    Article  MATH  Google Scholar 

  53. Sandham, N.D., Sandberg, R.D.: Direct numerical simulation of the early development of a turbulent mixing layer downstream of a splitter plate. J. Turbul. 10 (1), 1–17 (2009)

    Article  Google Scholar 

  54. Kumar, G., Bertsch, R.L., Girimaji, S.S.: Stabilizing action of pressure in homogeneous compressible shear flows: effect of Mach number and perturbation obliqueness. J. Fluid Mech. 760, 540–566 (2014)

    Article  MathSciNet  Google Scholar 

  55. Coleman, G.N., Kim, J., Moser, R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)

    Article  MATH  Google Scholar 

  56. Goldstein, D., Chu, J., Brown, G.: Lateral Spreading Mechanism of a Turbulent Spot an a Turbulent Wedge. In: Proceedings of the International Symposium on Turbulence and Shear Flow Phenomena, pp. Paper 6B–2, 1–6. Melbourne (2015)

  57. Chu, B.-T., Kovásznay, S.G.: Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 515–522 (1958)

    Article  MathSciNet  Google Scholar 

  58. Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756, R1 (2014)

    Article  Google Scholar 

  60. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds- and Mach-number effects in canonical shock-turbulence interaction. J. Fluid Mech. 717, 293–321 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  61. Pirozzoli, S., Bernardini, M., Grasso, F.: Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  62. Lawal, A.A.: Direct Numerical Simulation of Transonic Shock/Boundary-Layer Interactions. PhD Thesis. University of Southampton, Southampton (2002)

  63. Pagella, A., Babucke, A., Rist, U.: Two-dimensional numerical investigations of small-amplitude disturbances in a boundary layer at Ma=4.8: Compression corner versus impinging shock wave. Phys. Fluids 16(7), 2272–2281 (2004)

    Article  MATH  Google Scholar 

  64. Matheis, J., Hickel, S.: On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech. 776, 200–234 (2015)

    Article  Google Scholar 

  65. Doerffer, P., Hirsch, C., Dussauge, J.-P., Babinsky, H., Barakos, G.N.: Unsteady Effect of Shock Wave Induced Separation, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 114. Springer (2010)

  66. Garnier, E.: Stimulated detached eddy simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19(6), 479–486 (2009)

    Article  MATH  Google Scholar 

  67. Garnier, E., Sagaut, P., Deville, M.: Large eddy simulation of shock/boundary-layer interaction. AIAA J. 40(10), 1935–1944 (2002)

    Article  Google Scholar 

  68. Dupont, P., Haddad, C., Debiève, J.F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  MATH  Google Scholar 

  69. Piponniau, S., Dussauge, J.P., Debiève, J.F., Dupont, P.A.: simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech 629, 87–108 (2009)

    Article  MATH  Google Scholar 

  70. Touber, E.: Unsteadiness in Shock-Wave/Boundary-Layer Interactions. PhD Thesis. University of Southampton, Southampton (2010)

  71. Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  MATH  Google Scholar 

  72. Pirozzoli, S., Grasso, F.: Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M =2.25. Phys. Fluids 18(6), 065113 (2006)

    Article  Google Scholar 

  73. Robinet, J.: Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  74. Touber, E., Sandham, N.D.: Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417–465 (2011)

    Article  MATH  Google Scholar 

  75. Plotkin, K.J.: Shock-wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13(8), 1036–1040 (1975)

    Article  Google Scholar 

  76. Poggie, J., Bisek, N.J., Kimmel, R.L., Stanfield, S.A.: Spectral Characteristics of Separation Shock Unsteadiness. AIAA J. 53(1), 200–214 (2015)

    Article  Google Scholar 

  77. Agostini, L., Larcheveque, L., Dupont, P.: Mechanism of shock unsteadiness in separated shock/boundary-layer interactions. Phys. Fluids 27(12) (2015)

  78. Sartor, F., Mettot, C., Bur, R., Sipp, D.: Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis. J. Fluid Mech. 781, 550–577 (2015)

    Article  Google Scholar 

  79. Sansica, A., Sandham, N.D., Hu, Z.: Forced response of a laminar shock-induced separation bubble. Phy. Fluids 26, 957–959 (2014)

    Article  Google Scholar 

  80. Grilli, M., Schmid, P.J., Hickel, S., Adams, N.A.: Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 16–28 (2012)

    Article  MATH  Google Scholar 

  81. Fang, J., Yao, Y., Zheltovodov, A.A., Li, Z., Lu, L.: Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Phys. Fluids 27(12) (2015). Article no. 125104

  82. Eagle, W.E., Driscoll, J.F.: Shock wave-boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points. J. Fluid Mech. 756, 328–353 (2014)

    Article  Google Scholar 

  83. Helmer, D.B., Campo, L.M., Eaton, J.K.: Three-dimensional features of a Mach 2.1 shock/boundary layer interaction. Expt. Fluids 53(5), 1347–1368 (2012)

    Article  Google Scholar 

  84. Campo, L.M., Eaton, J.K.: Shock boundary layer interactions in a low aspect ratio duct. Int. J. Heat Fluid Flow 51, 353–371 (2015)

    Article  Google Scholar 

  85. Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D., Eaton, J.K.: Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 5–62 (2014)

    Article  Google Scholar 

  86. Wang, B., Sandham, N.D., Hu, Z., Liu, W.: Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. J. Fluid Mech. 767, 526–561 (2015)

    Article  Google Scholar 

  87. Edgington-Mitchell, D., Oberleithner, K., Honnery, D.R., Soria, J.: Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822–847 (2014)

    Article  Google Scholar 

  88. Aubard, G., Gloerfelt, X., Robinet, J.C.: Large-Eddy Simulation of Broadband Unsteadiness in a Shock/Boundary-Layer Interaction. AIAA J. 51(10), 2395–2409 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Bo Wang and Satya Jammy for providing databases for the 3D SWBLI case. Data statement: No additional data was generated in this work. Funding: This work would not have been possible wthout the continued support of the UK Turbulence Consortium, under grants EP/G069581/1 and EP/L000261/1. Conflict of interest: The author declares that he has no conflict of interest. A preliminary version of this paper was presented at the 9th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9) Conference, June 30th to July 3rd 2015, Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil D. Sandham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandham, N.D. Effects of Compressibility and Shock-Wave Interactions on Turbulent Shear Flows. Flow Turbulence Combust 97, 1–25 (2016). https://doi.org/10.1007/s10494-016-9733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9733-6

Keywords

Navigation