Skip to main content
Log in

An adaptive ALE method for underwater explosion simulations including cavitation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a numerical procedure for simulating a simplified mathematical model of underwater explosion phenomena. The Euler set of equations is selected as the governing equations and the ideal gas and Tammann equations of state (EOS) are used to obtain pressure in the gas bubble and the surrounding water zone, respectively. The modified Schmidt EOS is used to simulate the cavitation regions. An arbitrary Lagrangian–Eulerian method is used to integrate the governing equations over an unstructured moving grid. A mesh adapting technique is applied to increase the accuracy as well as for better capturing of flow physics. Moreover, a least-square smoother is employed to moderate the undesirable effects of gas–water interface irregularities. The numerical results verify that the proposed method is capable of predicting complex physics involved in a spherical underwater explosion. The method also shows a very good performance in smoothing the interface while minimizing the loss of mass and momentum in two-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daniel J., Krauthammer T., Koudela K.L., Strait L.H.: An UNDEX response validation methodology. Int. J. Impact Eng. 27, 919–937 (2002)

    Article  Google Scholar 

  2. Massoni J., Saurel R., Lefrancois A., Baudin G.: Modeling spherical explosions with aluminized energetic materials. J. Shock Waves 16, 75–92 (2006)

    Article  MATH  Google Scholar 

  3. Saito T., Marumoto M., Yamashita H., Hosseini S.H.R., Nakagawa A., Hirano T., Takayama K.: Experimental and numerical studies of underwater shock wave attenuation. J. Shock Waves 13, 139–148 (2003)

    Article  Google Scholar 

  4. Zhang A., Yao X.L.: Interaction of underwater explosion bubble with complex elastic-plastic structure. J. Appl. Math. Mech. 29(1), 89–100 (2008)

    Article  MATH  Google Scholar 

  5. Tomita Y., Obara T., Takayama K., Kuwahara M.: Cavitation phenomena in extracorporeal micro explosion lithotripsy. J. Shock Waves 3, 149–157 (1994)

    Article  Google Scholar 

  6. Chen W., Liu Y., Huang W., Gao X.: Dynamics and measurement of cavitation bubble. Sci. China Ser. G Phys. Mech. Astron. 49(4), 385–395 (2006)

    Article  Google Scholar 

  7. Xie W.F., Young Y.L., Liu T.G., Khoo B.C.: Dynamic response of deformable structures subjected to shock load and cavitation reload. J. Comput. Mech. 40, 667–681 (2007)

    Article  MATH  Google Scholar 

  8. Liu T.G., Khoo B.C., Xie W.F.: Isentropic one-fluid modeling of unsteady cavitating flow. J. Comput. Phys. 201, 80–108 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Abgrall R.: How to prevent pressure oscillations in multi-component flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Saurel R., Abgrall R.: A multiphase Godunov method for multi-fluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shyue KH.: A fluid mixture algorithm for compressible multi-component flow with Mie–Grunesian equation of state. J. Comput. Phys. 171, 678–707 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Perigaud G., Saurel R.: A compressible flow model with capillary effects. J. Comput. Phys. 209, 139–178 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller G.H., Puckett E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128(1), 134–164 (1996)

    Article  MATH  Google Scholar 

  14. Mulder W., Osher S., Sethain J.A.: Computing interface motion: the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities. J. Comput. Phys. 100, 209–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sethain J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503–555 (2001)

    Article  MathSciNet  Google Scholar 

  16. Liu T.G., Khoo B.C., Wang C.W.: The ghost fluid method for compressible gas–water simulation. J. Comput. Phys. 204, 193–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fedkiw R., Aslam T., Merriman B., Osher S.: A non-oscillatory Eulerian approach to interfaces in multi-material flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Benson D.: Computational methods in Lagrangian and Eulerian hydrocodes. J. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu T.G., Khoo B.C., Xie W.F.: Application of a one-fluid model for large scale homogeneous unsteady cavitation: The modified Schmidt model. J. Comput. Fluids 35, 1177–1192 (2006)

    Article  MATH  Google Scholar 

  20. Saurel R., Le Metayer O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)

    Article  MATH  Google Scholar 

  21. Cocchi J.P., Saurel R.: A Riemann problem based method for the resolution of compressible multi-material flows. J. Comput. Phys. 137, 265–298 (1996)

    Article  MathSciNet  Google Scholar 

  22. Pishevar, A.R.: An ALE method for compressible multi-fluid flows: Application to underwater explosion. In: Proceedings of 11th Annual Conference of the CFD society of Canada, pp. 392–398 (2006)

  23. Pishevar, A.R.: An ALE scheme for numerical simulation of 2D underwater explosion. In: ECCOMAS Computational Fluid Dynamics Conference, Egmond aan Zee, The Netherlands (2006)

  24. Zhang H., Reggio M., Trepanier T.Y., Camarero R.: Discrete form of the GCL for moving meshes and its implementation in CFD scheme. J. Comput. Fluids 22, 9–23 (1993)

    Article  MATH  Google Scholar 

  25. Nkonga B.N., Guillard H.: Godunov type method on non-structured meshes for three-dimensional moving boundary problems. J. Comput. Methods Appl. Mech. Eng. 1130, 183–204 (1994)

    Article  MathSciNet  Google Scholar 

  26. Lesoinne M., Farhat C.: Geometric conservation laws for the flow problems with moving boundaries and deformable mesh and their impact on aeroelastic computations. J. Comput. Methods Appl. Mech. Eng. 134, 71–90 (1996)

    Article  MATH  Google Scholar 

  27. Smith R.W.: A geometrically conservative arbitrary Lagrangian–Eulerian flux splitting scheme. J. Comput. Phys. 150, 268–289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tang H.S., Huang D.: A second-order accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones. J. Comput. Phys. 128, 301–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Toro E.: Riemann solvers and numerical methods for simulating fluid dynamics. Springer, Berlin (1997)

    Google Scholar 

  30. Van Leer B.: Toward the ultimate conservative difference scheme v, a second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  31. Shu C.W.: Total variation diminishing time discretization. SIAM J. Sci. Stat. Comput. 9, 205–222 (1988)

    Google Scholar 

  32. Zhang Y.L., Yeo K.S., Khoo B.C., Wang C.: 3D jet impact and toroidal bubbles. J. Comput. Phys. 166, 336–360 (2001)

    Article  MATH  Google Scholar 

  33. Furst J.: A weighted least-square scheme for compressible flows. J. Flow Turbul. Combust. 76, 331–342 (2006)

    Article  Google Scholar 

  34. Heinrichs W.: An adaptive spectral least-squares scheme for the Burgers equation. J. Numer. Algorithm 44, 1–10 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lohner R.: Robust vectorized search algorithm for interpolation on unstructured grids. J. Comput. Phys. 118, 380–387 (1995)

    Article  Google Scholar 

  36. Liao G., Lei Z., de la Pena G.C.: Adaptive grids for resolution enhancement. J. Shock Waves 12, 153–156 (2002)

    Article  MATH  Google Scholar 

  37. Zhang F., Jiang L., Yeh G.T., Parker J.C.: An adaptive local grid refinement and peak/valley capture algorithm to solve nonlinear transport problems with moving sharp-fronts. J. Transp. Porous Med. 72, 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  38. Chandra S., Xiaolin Li., Saif T., Parashar M.: Enabling scalable parallel implementations of structured adaptive mesh refinement applications. J. Supercomput. 39, 177–203 (2007)

    Article  Google Scholar 

  39. Anderson R.W., Elliott N.S., Pember R.B.: An arbitrary Lagrangian–Eulerian method with adaptive mesh refinement for the solution of the Euler equations. J. Comput. Phys. 199, 598–617 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Burgarellia D., Kischinhevskyb M., Biezunera R.J.: A new adaptive mesh refinement strategy for numerically solving evolutionary PDE’s. J. Comput. Appl. Math. 196, 115–131 (2006)

    Article  MathSciNet  Google Scholar 

  41. Todd J.M., Jameson A., Baker T.: Solution of three-dimensional supersonic flow fields via adapting unstructured meshes. J. Comput. Fluids 22, 271–283 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Pishevar.

Additional information

Communicated by M.-S. Liou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pishevar, A.R., Amirifar, R. An adaptive ALE method for underwater explosion simulations including cavitation. Shock Waves 20, 425–439 (2010). https://doi.org/10.1007/s00193-010-0275-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-010-0275-x

Keywords

Navigation