Skip to main content
Log in

Dynamic response of deformable structures subjected to shock load and cavitation reload

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The dynamic response of deformable structures subjected to shock load and cavitation reload has been simulated using a multiphase model, which consists of an interface capturing method and a one-fluid cavitation model. Fluid–structure interaction (FSI) is captured via a modified ghost fluid method (Liu et al. in J Comput Phys 190: 651–681, 2003), where the structure is assumed to be a hydro-elasto-plastic material if subjected to a strong shock load. Bulk cavitation near the structural surface is captured using an isentropic model (Liu et al. in J Comput Phys 201:80–108, 2004). The integrated multiphase model is validated by comparing numerical predictions with 1D analytical solutions, and with numerical solutions calculated using the cavitation acoustic finite element (CAFÉ) method (Sprague and Geers in Shocks vib 7:105–122, 2001). To assess the ability of the multiphase model for multi- dimensions, underwater explosions (UNDEX) near structures are computed. The importance of cavitation reloading and FSI is investigated. Comparisons of the predicted pressure time histories with different explosion center are shown, and the effect on the structure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleich HH, Sandler IS (1970) Interaction between structures and bilinear fluids. Int J Solids Struct 6:617–639

    Article  MATH  Google Scholar 

  2. Deshpande VS, Fleck NA (2005) One-dimensional shock response of sandwich beams. J Mech Phys Solids 53:2347

    Article  Google Scholar 

  3. Farhat C, Roux FX (1991) A method for finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng. 32:1205–1227

    Article  MATH  Google Scholar 

  4. Fedkiw RP (2002) Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the Ghost fluid method. J Comput Phys 175:200–224

    Article  MATH  Google Scholar 

  5. Fedkiw RP, Marquina A, Merriman B (1999) A non oscillatory eulerian approach to interfaces in multimaterial flows (The ghost fluid method). J Comput Phys 152:457–492

    Article  MATH  MathSciNet  Google Scholar 

  6. Harten A (1984) On a class of high resolution total variation stable finite difference Schemes. SIAM J Numer Anal 21: 1–23

    Article  MATH  MathSciNet  Google Scholar 

  7. Harten A, Osher S (1987) Uniformly high-order accurate non-oscillatory schemes I. SIAM J Numer Anal 24:279–309

    Article  MATH  MathSciNet  Google Scholar 

  8. Harten A, Lax PD, Van Leer B (1983) Upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang H (1979) Transient response of two fluid-coupled spherical elastic shells to an incident pressure pulse. J Acoust Soc Am 65(4):881–887

    Article  Google Scholar 

  10. Huang H, Wang YF (1970) Transient interaction of spherical acoustic waves and a cylindrical elastic shell. J Acoust Soc Am 48(1):228–235

    Article  MATH  Google Scholar 

  11. Hughes TJR, Tezduyar TE (1984) Finite element method for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284

    Article  MATH  MathSciNet  Google Scholar 

  12. Hutchinson JW, Xue Z (2005) Metal sandwich plate optimized for pressure impulses. Int J Mech Sci 47:545–569

    Article  Google Scholar 

  13. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  14. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143

    Article  MATH  Google Scholar 

  15. Liu TG, Khoo BC, Yeo KS (2003) Ghost fluid method for strong shock impacting on material interface. J Comput Phys 190:651–681

    Article  MATH  Google Scholar 

  16. Liu TG, Khoo BC, Xie WF (2004) Isentropic one-fluid modelling of unsteady cavitating flow. J Comput Phys 201:80–108

    Article  MATH  MathSciNet  Google Scholar 

  17. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed. Algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  18. Schmidt DP, Rutland CJ, Corradini ML (1999) A fully compressible, two-dimensional model of small, high speed, cavitating nozzles. At Sprays 9:255–276

    Google Scholar 

  19. Shu CW, Osher S (1988) Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput Phys 77:439–471

    Article  MATH  MathSciNet  Google Scholar 

  20. Sprague MA, Geers TL (2001) Computational treatments of cavitation effects in near-free-surface underwater shock analysis. Shock Vib 7:105–122

    Google Scholar 

  21. Sprague MA, Geers TL (2003) Spectral elements and field separation for an acoustic fluid subject to cavitation. J Comput Phys 184:149–162

    Article  MATH  Google Scholar 

  22. Stein K, Tezduyar TE, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  23. Tang HS, Sotiropoulos F (1999) A second-order Godunov method for wave problems in coupled solid–water–gas systems. J Comput Phys 151:790–815

    Article  MATH  MathSciNet  Google Scholar 

  24. Taylor GI (1941) The pressure and impulse of submarine explosion waves on plates. The scientific papers of G I Taylor, vol III, p 287–303. Cambridge University Press, Cambridge

  25. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575

    Article  MATH  MathSciNet  Google Scholar 

  26. Tezduyar TE, Senga M (2005) SUPG finite element computation of inviscid supersonic flows with YZ· shock-capturing. Comput Fluids (in press)

  27. Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulations and YZβ shock-capturing. Comput Mech 38:469–481

    Article  Google Scholar 

  28. Van Leer B (1974) Towards the ultimate conservative difference schemes II: Monotonicity and conservative combined in a second-order scheme. J Comput Phys 14:361–370

    Article  Google Scholar 

  29. Van Leer B (1977) Towards the ultimate conservative difference schemes III: Upstream centred finite-difference schemes for ideal compressible flow. J Comput Phys 23:263–275

    Article  Google Scholar 

  30. Wardlaw AB, Luton JA (2000) Fluid–structure interaction mechanisms for close-in explosions. Shock Vib 7:265–275

    Google Scholar 

  31. Wardlaw AB, Mair HU (1998) Spherical solutions of an underwater explosion bubble. Shock Vib 5:89–102

    Google Scholar 

  32. Xie WF, Liu TG, Khoo BC (2006) Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt model. Comput Fluids 35:1177–1192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W.F., Young, Y.L., Liu, T.G. et al. Dynamic response of deformable structures subjected to shock load and cavitation reload. Comput Mech 40, 667–681 (2007). https://doi.org/10.1007/s00466-006-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0132-z

Keywords

Navigation