Skip to main content
Log in

Abstract

Based on the introduction of international progress, our investigations on acoustic cavitation have been reported. Firstly we considered the cavity’s dynamics under the drive of the asymmetrical acoustic pressure. An aspheric dynamical model was proposed and a new stable and aspheric solution was found in numerical simulation of the theoretical framework of the aspheric model. Then, a dual Mie-scattering technique was developed to measure the cavity’s aspheric pulsation. A significant asynchronous pulsation signal between two Mie-scattering channels was caught in the case of large cavity driven by low acoustic pressure. As a direct deduction, we observed an evidence of cavity’s aspheric pulsation. Furthermore, we studied the dependency of the asynchronous pulsation signal on the various parameters, such as the amplitude and frequency of the driving acoustic pressure, and the surface tension, viscosity and gas concentration of the liquid. Finally, we introduced a new numeric imaging technique to measure the shapes of the periodic pulsation cavities. The time-resolution was in the order of 20 ns, one order of magnitude lower than that in the previous work, say, 200 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leighton T G. The Acoustic Bubble. London: Academic Press, 1994

    Google Scholar 

  2. Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag, 1917, 34: 94–98

    MATH  Google Scholar 

  3. Didenko Y T, McNamara W B, Suslick K S. Molecular emission from single-bubble sonoluminescence. Nature, 2000, 407: 877–879

    Article  ADS  Google Scholar 

  4. Marinesco N, Trillat J J. Action of supersonic waves upon the photographic plate. Proc R Acad Sci, 1933, 196: 858–860

    Google Scholar 

  5. Gaitan D F, Crum L A, Church C C, Roy R A. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am, 1992, 91: 3166–3183

    Article  ADS  Google Scholar 

  6. Barber B P, Putterman S J. Observation of synchronous picosecond sonoluminescence. Nature, 1991, 352: 318–320

    Article  ADS  Google Scholar 

  7. Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W. Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett, 1977, 79: 1405–1408

    Article  ADS  Google Scholar 

  8. Pecha R, Gompf B, Nick G, Wang Z Q, Eisenmenger W. Resolving the sonoluminescence pulse shape with a streak camera. Phys Rev Lett, 1998, 81: 717–720

    Article  ADS  Google Scholar 

  9. Crum L A. Sonoluminescence. Physics Today, 1994, 47: 22–29

    Google Scholar 

  10. Dam J S, Levinsen M T, Skogstad M. Period-doubling bifurcations from the spherical symmetry in sonoluminescence: Experimental verification. Phys Rev Lett, 2002, 89: 84303

    Google Scholar 

  11. Holt R G, Gaitan D F, Atchley A A, Holzfuss J. Chaotic sonoluminescence. Phys Rev Lett, 1994, 72: 1376–1379

    Article  ADS  Google Scholar 

  12. Didenko Y T, McNamara W B, Suslick K S. Molecular emission from single-bubble sonoluminescence. Nature, 2000, 407: 877–879

    Article  ADS  Google Scholar 

  13. Flannigan D J, Suslick K S. Plasma formation and temperature measurement during single-bubble cavitation. Nature, 2005, 434: 52–55

    Article  ADS  Google Scholar 

  14. Young J B, Nelson J A, Kang W. Line emission in single-bubble sonoluminescence. Phys Rev Lett, 2001, 86: 2673–2676

    Article  ADS  Google Scholar 

  15. Moss W C, Clarke D B, White J W, Young D A. Sonoluminescence and the prospects for table-top micro-thermonuclear fusion. Phys Lett A, 1996, 211: 69–74

    Article  ADS  Google Scholar 

  16. Taleyarkhan R P, West C D, Cho J S, et al. Evidence for nuclear emissions during acoustic cavitation. Science, 2002, 295: 1868–1873

    Article  ADS  Google Scholar 

  17. Shapira D, Saltmarsh M. Nuclear fusion in collapsing bubbles—Is it there? An attempt to repeat the observation of nuclear emissions from sonoluminescence. Phys Rev Lett, 2002, 89: 104302

    Google Scholar 

  18. Taleyarkhan R P, Cho J S, West C D, et al. Additional evidence of nuclear emissions during cavitation. Phys Rev E, 2004, 69: 036109

    Google Scholar 

  19. Weninger K, Putterman S J, Barber B P. Angular correlations in sonoluminescence: Diagnostic for the sphericity of a collapsing bubble. Phys Rev E, 1996, 54: 2205–2208

    Article  ADS  Google Scholar 

  20. Madrazo A, Garcia N, Nieto-Vesperinas M. Determination of the size and shape of a sonoluminescent single bubble: Theory on angular correlations of the emitted light. Phys Rev Lett, 1998, 80: 4590–4593

    Article  ADS  Google Scholar 

  21. Hilgenfeldt S, Lohse D, Brenner M P. Phase diagrams for sonoluminescing bubbles. Phys Fluids, 1996, 8: 2808–2857

    Article  MATH  ADS  Google Scholar 

  22. Chen W Z, Chen X, Lu M J, et al. Single bubble sonoluminescence driven by non-simple-harmonic ultrasounds. J Acoust Soc Am, 2002, 111: 2632–2637

    Article  ADS  Google Scholar 

  23. Wang W J, Chen W Z, Lu M J, et al. Bubble oscillations driven by aspherical ultrasound in liquid. J Acoust Soc Am, 2003, 114: 1899–1904

    ADS  Google Scholar 

  24. Tian Y R, Ketterling J A, Apfel R E. Direct observation of microbubble oscillations. J Acoust Soc Am, 1996, 100: 3976–3978

    Article  ADS  Google Scholar 

  25. Ketterling J A, Apfel R E. Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Phys Rev Lett, 1998, 81: 4991–4994

    Article  ADS  Google Scholar 

  26. Weninger K R, Barber B P, Putterman S J. Pulsed Mie-scattering measurements of the collapse of a sonoluminescing bubble. Phys Rev Lett, 1997, 78: 1799–1802

    Article  ADS  Google Scholar 

  27. Lentz W. J, Atchley A A, Gaitan D F. Mie-scattering from a sonoluminescing air bubble in water. Applied Optics, 1995, 34: 2648–2654

    Article  ADS  Google Scholar 

  28. Wu C C, Roberts P H. Bubble shape instability and sonoluminescence. Phys Lett A, 1998, 250: 131–136

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Weizhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Liu, Y., Huang, W. et al. Dynamics and measurement of cavitation bubble. SCI CHINA SER G 49, 385–395 (2006). https://doi.org/10.1007/s11433-006-0385-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-006-0385-8

Keywords

Navigation