Skip to main content
Log in

Asynchronous and time-differenced RTK for ocean applications using the BeiDou short message service

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The ocean real-time kinematic (ORTK) technique was proposed to realize high-precision GNSS positioning for long baselines with differential corrections transmitted through the BeiDou short message service, where the positioning accuracy is from subdecimeter to centimeter and the convergence time is several minutes without integer ambiguity resolution. In this paper, the ORTK method is improved based on the dual-frequency global positioning system and triple-frequency BeiDou navigation satellite system. The convergence time is shortened to a few seconds using the following modifications/innovations. First, the uncombined corrections are used instead of the ionosphere-free corrections. A more efficient encoding strategy is proposed to compress the uncombined corrections. Second, the ultrarapid precise ephemeris provided by the Tongji BeiDou Analysis Center is assimilated in the corrections to mitigate the orbit errors, and a long-baseline ionosphere-weighted model is applied to estimate the ionospheric delays. Third, an asynchronous and time-differenced positioning filter is employed to address the time-delays and time-correlations of the corrections. Finally, the float solutions in our earlier study are upgraded to fixed solutions by partially fixing the ambiguities. Experiments on a 320 km baseline indicate that the ambiguities can be correctly fixed within 10 s and that the positioning accuracy is approximately 1.1 cm for both horizontal components and 5 cm for the vertical component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahn Y, Kim D, Dare P, Park J (2008) Estimation of troposphere decorrelation using the combined zenith‐dependent parameter. In: ION GNSS 2008. Savannah, pp 261–270

  • Brown RG, Hwang PYC (1992) Introduction to random signals and applied Kalman filtering, 2nd edn. Wiley, New York

    Google Scholar 

  • Chen K, Xu T, Chen G, Li J, Yu S (2015) The orbit and clock combination of iGMAS analysis centers and the analysis of their precision. Proc China Satell Navig Conf (CSNC) 2:421–438

    Google Scholar 

  • Chen X, Allison T, Cao W, Ferguson K, Grunig S, Gomez V, Kipka A, Kohler J, Landau H, Leandro R, Lu G, Stolz R, Talbot N (2011) Trimble RTX, an innovative new approach for network RTK. In: ION GNSS 2011. Portland, pp 2214–2219

  • China Satellite Navigation Office (CSNO) (2015) Performance requirements and test methods for BDS RDSS unit, http://www.beidou.gov.cn/zt/bdbz/201712/W020171226815455418203.pdf

  • China Satellite Navigation Office (CSNO) (2020) BeiDou navigation satellite system signal in space interface control document precise point positioning service signal PPP-B2b (Version 1.0), http://en.beidou.gov.cn

  • China Satellite Navigation Office (CSNO) (2021) BeiDou navigation satellite system open service performance standard (Version 3.0), http://en.beidou.gov.cn

  • Choy S, Kuckartz J, Dempster AG, Rizos C, Higgins M (2017) GNSS satellite e-based augmentation systems for Australia. GPS Solut 21(3):835–848

    Article  Google Scholar 

  • Collins JP, Langley RB (1997) A tropospheric delay model for the user of the wide area augmentation system. Tech. Rep. No. 187, Department of Geodesy and Geomatics Engineering, University of New Brunswick

  • Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software version 5.2. University of Bern, Bern

    Google Scholar 

  • Dodson A, Shardlow P, Hubbard L, Elgered G, Jarlemark P (1996) Wet tropospheric effects on precise relative GPS height determination. J Geod 70:188–202

    Article  Google Scholar 

  • Geng J, Teferle FN, Meng X, Dodson AH (2010) Kinematic precise point positioning at remote marine platforms. GPS Solut 14(4):343–350

    Article  Google Scholar 

  • Grejner-Brzezinska DA, Kashani I, Wielgosz P, Smith DA, Spencer PSJ, Robertson DS, Mader GL (2007) Efficiency and reliability of ambiguity resolution in network-based real-time kinematic GPS. J Surv Eng 133(2):56–65

    Article  Google Scholar 

  • Ji S, Sun Z, Weng D, Chen W, Wang Z, He K (2019) High-precision ocean navigation with single set of BeiDou short-message device. J Geod 93(9):1589–1602

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electr Syst 3:325–331

    Article  Google Scholar 

  • Li B, Feng Y, Shen Y, Wang C (2010) Geometry-specified troposphere decorrelation for subcentimeter real-time kinematic solutions over long baselines. J Geophys Res 115(B11):404

    Google Scholar 

  • Li B, Shen Y, Zhang X (2013) Three frequency GNSS navigation prospect demonstrated with semi-simulated data. Adv Spa Res 51(7):1175–1185

    Article  Google Scholar 

  • Li B, Shen Y, Feng Y, Gao W, Yang L (2014) GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. J Geod 88(2):99–112

    Article  Google Scholar 

  • Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635

    Article  Google Scholar 

  • Li B, Lou L, Shen Y (2016) GNSS elevation-dependent stochastic modeling and its impacts on the statistic testing. J Surv Eng 142(2):04015012

    Article  Google Scholar 

  • Li L, Jia C, Zhao L, Yang F, Li Z (2017) Integrity monitoring-based ambiguity validation for triple-carrier ambiguity resolution. GPS Solut 21(2):797–810

    Article  Google Scholar 

  • Li B, Zhang Z, Shen Y, Yang L (2018) A procedure for the significance testing of unmodeled errors in GNSS observations. J Geod 92(10):1171–1186

    Article  Google Scholar 

  • Li B, Ge H, Ge M, Nie L, Shen Y, Schuh H (2019a) LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services. Adv Spa Res 63(1):73–93

    Article  Google Scholar 

  • Li B, Zhang Z, Zang N, Wang S (2019b) High-precision GNSS ocean positioning with BeiDou short-message communication. J Geod 93(2):125–139

    Article  Google Scholar 

  • Liu Z, Yue D, Huang Z, Chen J (2020) Performance of real-time undifferenced precise positioning assisted by remote IGS multi-GNSS stations. GPS Solut 24(2):1–14

    Article  Google Scholar 

  • Liu G, Lachapelle G (2002) Ionosphere weighted GPS cycle ambiguity resolution. In: ION NTM 2002. San Diego, pp 1–5

  • Nardo A et al (2015) Experiences with trimble CenterPoint RTX with fast convergence. Trimble TerraSat GmbH Haringstrasse 19:85635

    Google Scholar 

  • Nie Z, Gao Y, Wang Z, Ji S, Yang H (2018) An approach to GPS clock prediction for real-time PPP during outages of RTS stream. GPS Solut 22(1):14

    Article  Google Scholar 

  • Nie Z, Wang B, Zhen J, He K (2020) An offshore real-time precise point positioning technique based on a single set of BeiDou short-message communication devices. J Geod 94:78

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Odijk D (2000) Weighting ionospheric corrections to improve fast GPS positioning over medium distances. In: ION GPS 2000. Salt Lake City, pp 1113–1123

  • Odolinski R, Teunissen PJG, Odijk D (2015) Combined GPS+BDS for short to long baseline RTK positioning. Meas Sci Technol 26(4):045801

    Article  Google Scholar 

  • Petovello MG, O’Keefe K, Lachapelle G, Cannon ME (2009) Consideration of time-correlated errors in a Kalman filter applicable to GNSS. J Geod 83(1):51–56

    Article  Google Scholar 

  • Schaffrin B, Bock Y (1988) A unified scheme for processing GPS phase observations. Bull Géod 62:142–160

    Article  Google Scholar 

  • RTCM Special Committee No. 104 (2016) RTCM standard 10403.3 differential GNSS (global navigation satellite systems) services—version 3, https://www.rtcm.org/publications

  • Takasu T, Yasuda A (2010) Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation. In: ION GNSS 2010. Portland, pp 161–171

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen P, Montenbruck O (eds) (2017) Springer handbook of global navigation satellite systems. Springer, Berlin

    Google Scholar 

  • Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull Géod 64:127–159

    Article  Google Scholar 

  • Wang J (1999) Stochastic modeling for real-time kinematic GPS/GLONASS positioning. Navigation 46(4):297–305

    Article  Google Scholar 

  • Wang M, Li B (2016) Evaluation of empirical tropospheric models using satellite-tracking tropospheric wet delays with water vapor radiometer at Tongji. China Sensors 16(2):186

    Article  Google Scholar 

  • Wanninger L (1997) Virtual reference stations (VRS). GPS Solut 7(2):143–144

    Article  Google Scholar 

  • Xiang Y, Gao Y, Li Y (2020) Reducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling. J Geod 94(1):1–13

    Article  Google Scholar 

  • Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geod 75(2–3):109–116

    Article  Google Scholar 

  • Yang F, Zhao L, Li L, Feng S, Cheng J (2019) Performance evaluation of kinematic BDS/GNSS real-time precise point positioning for maritime positioning. J Navig 72(1):34–52

    Article  Google Scholar 

  • Zhang J, Lachapelle G (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. J Geod 75:255–266

    Article  Google Scholar 

  • Zhang L, Lv H, Wang D, Hou Y, Wu J (2015) Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output. J Geod 89(7):641–653

    Article  Google Scholar 

  • Zhang Z, Li B, Zou J (2020) Can long-range single-baseline RTK provide service in shanghai comparable to network RTK? J Surv Eng 146(4):05020007

    Article  Google Scholar 

  • Zhang Z, Li B, Nie L, Wei C, Jia S, Jiang S (2019) Initial assessment of BeiDou-3 global navigation satellite system: signal quality, RTK and PPP. GPS Solut 23(4):111

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Funds of China (42225401, 42074026, 41874030), the Program of Shanghai Academic Research Leader (20XD1423800), the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-07-E00095), the “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (20SG18) and the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee (20511103302, 20511103402 and 20511103702).

Author information

Authors and Affiliations

Authors

Contributions

ZZ (the first author) and BL designed research; ZZ (the fourth author) and SW performed the experiments; ZZ (the first author) processed the data; ZZ (the first author), BL and YG wrote the paper.

Corresponding author

Correspondence to Bofeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Following the idea in Petovello et al. (2009), a Kalman filter solution with time-correlated observations is derived in this Appendix. A new observation vector can be formed by differencing the observation vectors of two consecutive epochs as

$$ \begin{aligned} {\varvec{z}}_{k} = &\, {\varvec{l}}_{k} - {\varvec{S}}_{k,k - 1} {\varvec{l}}_{k - 1} \\ = & \,{\varvec{A}}_{k} {\varvec{\xi}}_{k} - {\varvec{S}}_{k,k - 1} {\varvec{A}}_{k - 1} {\varvec{\xi}}_{k - 1} + {\varvec{\eta}}_{k} - {\varvec{S}}_{k,k - 1} {\varvec{\eta}}_{k - 1} \\ \end{aligned} $$
(24)

Applying state transition Eqs. (18) and (19), we have a new observation equation as

$$ \begin{array}{*{20}c} {{\varvec{z}}_{k} = {\varvec{H}}_{k} {\varvec{\xi}}_{k} + {\varvec{v}}_{k} } \\ \end{array} $$
(25)

where

$$ \begin{array}{*{20}c} {{\varvec{H}}_{k} = {\varvec{A}}_{k} - {\varvec{S}}_{k,k - 1} {\varvec{A}}_{k - 1} } \\ \end{array} $$
(26)
$$ \begin{array}{*{20}c} {{\varvec{v}}_{k} = {\varvec{S}}_{k,k - 1} {\varvec{A}}_{k - 1} {\mathbf{w}}_{k} + {\varvec{\eta}}_{k} - {\varvec{S}}_{k,k - 1} {\varvec{\eta}}_{k - 1} } \\ \end{array} $$
(27)

The variance of the new observation noise vector \({\varvec{v}}_{k}\) is

$$ \begin{array}{*{20}c} {{\varvec{Q}}_{{{\varvec{v}}_{k} }} = {\varvec{S}}_{k,k - 1} {\varvec{A}}_{k - 1} {\varvec{Q}}_{{w_{k} }} {\varvec{A}}_{k - 1}^{{\text{T}}} {\varvec{S}}_{k,k - 1}^{{\text{T}}} + {\varvec{Q}}_{{{\varvec{\eta}}_{k} }} + {\varvec{S}}_{k,k - 1} {\varvec{Q}}_{{{\varvec{\eta}}_{k - 1} }} {\varvec{S}}_{k,k - 1}^{{\text{T}}} } \\ \end{array} $$
(28)

Here, \({\varvec{v}}_{k}\) is time-uncorrelated since \({\mathbf{w}}_{k}\), \({\varvec{\eta}}_{k}\) and \({\varvec{\eta}}_{k - 1}\) are all independent of each other and time-uncorrelated. However, \({\varvec{v}}_{k}\) is correlated to the process noise vector \({\mathbf{w}}_{k}\) with a covariance matrix as

$$ \begin{array}{*{20}c} {{\varvec{C}}_{k} = {\varvec{Q}}_{{w_{k} }} {\varvec{A}}_{k - 1}^{{\text{T}}} {\varvec{S}}_{k,k - 1}^{{\text{T}}} } \\ \end{array} $$
(29)

In such a case, a standard Kalman filter is not applicable, and the filter solution should be instead resolved as (Brown and Hwang 1992)

$$ \begin{array}{*{20}c} {\bar{\boldsymbol{\xi }}_{k} = \hat{\boldsymbol{\xi}}_{k - 1} + {\mathbf{w}}_{k} } \\ \end{array} $$
(30a)
$$ \begin{array}{*{20}c} {{\varvec{Q}}_{{\bar{\boldsymbol{\xi }}_{k} }} = {\varvec{Q}}_{{\hat{\boldsymbol{\xi }}_{k - 1} }} + {\varvec{Q}}_{{{\mathbf{w}}_{k} }} } \\ \end{array} $$
(30b)
$$ \begin{array}{*{20}c} {\hat{\boldsymbol{\xi }}_{k} = \bar{\boldsymbol{\xi }}_{k} + {\varvec{J}}_{k} \left( {{\varvec{z}}_{k} - {\varvec{H}}_{k} \bar{\boldsymbol{\xi }}_{k} } \right)} \\ \end{array} $$
(30c)
$$ \begin{array}{*{20}c} {{\varvec{Q}}_{{\hat{\boldsymbol{\xi }}_{k} }} = \left( {{\varvec{I}} - {\varvec{J}}_{k} {\varvec{H}}_{k} } \right){\varvec{Q}}_{{\bar{\boldsymbol{\xi }}_{k} }} - {\varvec{J}}_{k} {\varvec{C}}_{k}^{{\text{T}}} } \\ \end{array} $$
(30d)

where

$$ \begin{array}{*{20}c} {{\varvec{J}}_{k} = \left( {{\varvec{Q}}_{{\bar{\boldsymbol{\xi }}_{k} }} {\varvec{H}}_{k}^{{\text{T}}} + {\varvec{C}}_{k} } \right)\left( {{\varvec{H}}_{k} {\varvec{Q}}_{{\bar{\boldsymbol{\xi }}_{k} }} {\varvec{H}}_{k}^{{\text{T}}} + {\varvec{Q}}_{{{\varvec{v}}_{k} }} + {\varvec{H}}_{k} {\varvec{C}}_{k} + {\varvec{C}}_{k}^{{\text{T}}} {\varvec{H}}_{k}^{{\text{T}}} } \right)^{ - 1} } \\ \end{array} $$
(31)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, B., Gao, Y. et al. Asynchronous and time-differenced RTK for ocean applications using the BeiDou short message service. J Geod 97, 7 (2023). https://doi.org/10.1007/s00190-023-01699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-023-01699-0

Keywords

Navigation