Skip to main content
Log in

Geoid’s potential \(W_0\) from a weighted constrained optimization problem

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The aim of this study is to estimate the geoid’s potential value, \(W_0\), based on a weighted constrained optimization problem (WCOP) utilizing the most recent mean sea surface (MSS) models and global geopotential models (GGMs). The weight factor introduced into this WCOP-based approach is defined as a function of three constituents, i.e., latitude, MSS height uncertainty, and GGM commission error. In the proposed method, according to the Gauss–Listing definition for the geoid, first, an equipotential surface is found that geometrically fits the global MSS in a least-squares sense. Next, the GGM-derived gravity potential value of this equipotential surface is regarded as \(W_0\). In this work, an error analysis is also provided to estimate the uncertainty of \(W_0\). Due to the importance of the input data in the computation of \(W_0\), the sensitivity of \(W_0\) to the input data is studied from various aspects. In this regard, we find that: (1) all the three constituents of the weight factor have a considerable effect on the \(W_0\) value and therefore should duly be considered in the computational procedure; (2) the minimum degree of the GGM expansion to neglect the GGM omission error in the computation of \(W_0\) is \(n=300\); (3) the \(W_0\) estimation is sensitive to the selected GGM through its commission error; and (4) the weight factor, which includes the inverse of the MSS height uncertainty, reduces the effect of the coastal regions on the estimated value of \(W_0\). To demonstrate the impact of the WCOP-based approach on the \(W_0\) value, this approach is compared with the approaches used in the International Association of Geodesy (IAG) JWG 0.1.1 based on the same input data. The results of this comparison show that the WCOP-based approach can make a considerable contribution to the estimation of \(W_0\). Finally, using the DTU21 MSS model and the GO_CONS_GCF_2_DIR_R6 GGM, we obtain a new value of \(62636853.745\pm 0.003\,\mathrm m^2\,s^{-2}\) for \(W_0\) at the epoch 2010.0, which differs from the IAG conventional value (Drewes et al. in J Geod 90:907–1205, 2016. https://doi.org/10.1007/s00190-016-0948-z) by \(0.345\pm 0.02\,\mathrm m^2\,s^{-2}\). We find that this discrepancy is mainly due to the use of different input data, although the contribution of the computational approach is also significant. The theoretical and numerical evaluations performed in this study show that the WCOP-based approach can properly realize the Gauss–Listing geoid definition, which is one of the conventions recommended by Sánchez et al. (J Geod 90:815–835, 2016. https://doi.org/10.1007/s00190-016-0913-x) to uniquely determine \(W_0\). Therefore, this approach can be regarded as a candidate for updating the current conventional \(W_0\) value, when it becomes obsolete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The DTU MSS models used in this study can be downloaded from https://ftp.space.dtu.dk/pub/. The CNES_CLS MSS models are available from https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mss.html. All the GGMs applied for this research are available from http://icgem.gfz-potsdam.de/tom_longtime. The GEBCO_2014 bathymetry model can be downloaded from https://www.gebco.net/data_and_products/historical_data_sets/#gebco_2014. Moreover, all the data produced in this study along with the relevant algorithms/programs are available from the corresponding author upon request.

References

  • Amin H, Sjöberg LE, Bagherbandi M (2019) A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. J Geod 93:1943–1961. https://doi.org/10.1007/s00190-019-01293-3

    Article  Google Scholar 

  • Andersen OB (2010) The DTU10 gravity field and mean sea surface. In: Presented at second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska, September 2010

  • Andersen, OB, Rio MH (2011) On the accuracy of current mean sea surface models for the use with GOCE data. In: Proceedings of 4th international GOCE user workshop, Munich, Germany 31 March–1 April (ESA SP-696, July 2011)

  • Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199. https://doi.org/10.1007/s00190-009-0355-9

    Article  Google Scholar 

  • Andersen OB, Knudsen P, Stenseng L (2018) A new DTU18 MSS mean sea surface-improvement from SAR altimetry. In: Abstract from 25 years of progress in radar altimetry symposium, vol 172, pp 24–29 (September 2018) Ponta Delgada. São Miguel Island Azores Archipelago, Portugal

  • Andersen OB, Abulaitijiang A, Zhang S, Rose SK (2021) A new high resolution Mean Sea Surface (DTU21MSS) for improved sea level monitoring, EGU General Assembly 2021, online, EGU21-16084

  • Bruinsma SL, Marty JC, Balmino G, Biancale R, Foerste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Presented at the ESA living planet symposium, Bergen, Norway, 27 June–2 July 2010 (see also: earth. esa.int/GOCE)

  • Bruinsma SL, Förste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612. https://doi.org/10.1002/grl.50716

    Article  Google Scholar 

  • Burša M, Šíma Z, Kostelecký J (1992) Determination of the geopotential scale factor from satellite altimetry. Stud Geophys Geod 36:101–109. https://doi.org/10.1007/BF01614122

    Article  Google Scholar 

  • Burša M, Raděj K, Šíma Z, True S, Vatrt V (1997) Determination of the geopotential scale factor from TOPEX/Poseidon satellite altimetry. Stud Geophys Geod 41:203–215. https://doi.org/10.1023/A:1023313614618

    Article  Google Scholar 

  • Burša M, Kouba J, Raděj K, True S, Vatrt V, Vojtíšková M (1998) Mean Earth’s equipotential surface from TOPEX/Poseidon altimetry. Stud Geophys Geod 42:456–466. https://doi.org/10.1023/A:1023356803773

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Müller A, Radej K, Vatrt V, Vojtíšková M, Vítek V (1999) Long-term stability of geoidal geopotential from Topex/Poseidon satellite altimetry 1993–1999. Earth Moon Planets 84:163–176. https://doi.org/10.1023/A:1018940306677

    Article  Google Scholar 

  • Burša M, Groten E, Kenyon S, Kouba J, Raděj K, Vatrt V, Vojtíšková M (2002) Earth’s dimension specified by geoidal geopotential. Stud Geophys Geod 46:1–8. https://doi.org/10.1023/A:1020014930573

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007) The geopotential value Wo for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81:103–110. https://doi.org/10.1007/s00190-006-0091-3

    Article  Google Scholar 

  • Čunderlík R, Mikula K (2009) Numerical solution of the fixed altimetry-gravimetry BVP using the direct BEM formulation. IAG Symp Ser 133:229–236. https://doi.org/10.1007/978-3-540-85426-5_27

    Article  Google Scholar 

  • Čunderlík R, Minarechová Z, Mikula K (2014) Realization of WHS based on the static gravity field observed by GOCE. IAG Symp Ser 141:211–220. https://doi.org/10.1007/978-3-319-10837-7_27

    Article  Google Scholar 

  • Dayoub N, Edwards SJ, Moore P (2012) The Gauss–Listing potential value \(W_0\) and its rate from altimetric mean sea level and GRACE. J Geod 86:681–694. https://doi.org/10.1007/s00190-012-0547-6

    Article  Google Scholar 

  • Drewes H, Kuglitsch F, Adám J, Rózsa S (2016) The geodesist’s handbook 2016. J Geod 90:907–1205. https://doi.org/10.1007/s00190-016-0948-z

    Article  Google Scholar 

  • Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs Geoinf 35:120–127. https://doi.org/10.1016/j.jag.2013.10.005

    Article  Google Scholar 

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geod 82:331–346. https://doi.org/10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abstr 13, EGU2011-3242-2, EGU2011

  • Förste C, Bruinsma SL, Flechtner F, Marty JC, Lemoine JM, Dahle C, Abrikosov O, Neumayer KH, Biancale R, Barthelmes F, Balmino G (2012) A preliminary update of the direct approach GOCE processing and a new release of EIGEN-6C. In: Presented at the AGU fall meeting 2012, San Francisco, USA, 3–7 Dec, Abstract No. G31B-0923

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Serv. https://doi.org/10.5880/ICGEM.2015

  • Förste C, Abrykosov O, Bruinsma S, Dahle C, König R, Lemoine JM (2019) ESA’s new satellite-only gravity field model via the direct approach (GOCE-DIR-R6). In: Frontiers of geodetic science, 17–19 September 2019, Stuttgart, Germany

  • Gauss CF (1828) Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona. Vandenhoek und Ruprecht, Göttingen

  • Grafarend EW, Ardalan AA (1997) W0: an estimate in the Finnish Height Datum N60, epoch 1993.4, from twenty-five GPS points of the Baltic Sea Level Project. J Geod 71:673–679. https://doi.org/10.1007/s001900050134

    Article  Google Scholar 

  • Gruber T, Abrikosov O, Hugentobler U (2010) GOCE standards. Document GP-TN-HPF-GS-0111, Issue 3.2. Prepared by the European GOCE Gravity Consortium EGG-C. http://earth.esa.int/pub/ESA_DOC/GOCE/

  • Haagmans RHN, van Gelderen M (1991) Error variances-covariances of GEM-T1: their characteristics and implications in geoid computation. J Geophys Res 96:20011–20022. https://doi.org/10.1029/91JB01971

    Article  Google Scholar 

  • Heck B (1989) A contribution to the scalar free boundary value problem of physical geodesy. Manu Geod 14:87–99

    Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. IAG Symp Ser 104:116–128. https://doi.org/10.1007/978-1-4684-7098-7_14

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco

    Google Scholar 

  • Horn RA, Johnson CR (2012) Matrix analysis, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Ince ES, Barthelmes F, Reißland S, Elger K, Förste C, Flechtner F, Schuh H (2019) ICGEM-15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst Sci Data 11:647–674. https://doi.org/10.5194/essd-11-647-2019

    Article  Google Scholar 

  • Karimi R, Ardalan AA (2010) An alternative direct method towards mean dynamic topography computations. Ocean Dyn 60:555–562. https://doi.org/10.1007/s10236-010-0275-5

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM 96, NASA

  • Liang W, Xu X, Li J, Zhu G (2018) The determination of an ultra high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Acta Geodaeticaet Cartographica Sinica 47(4):425–434. https://doi.org/10.11947/j.AGCS.2018.20170269

    Article  Google Scholar 

  • Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Grö der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen

  • McCarthy DD (1992) IERS Standards (1992). IERS Technical Note 13. Central Bureau of IERS-Observatoire de Paris, Paris

  • McCarthy DD (1996) IERS Conventions (1996). IERS Technical Note 21. Central Bureau of IERS-Observatoire de Paris, Paris

  • McCarthy DD, Petit G (2003) IERS Conventions (2003). IERS Technical Note 32. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Meyer-Gürr T, Rieser D, Hoeck E, Brockmann JM, Schuh WD, Krasbutter I,Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03S. In: Presented at the international symposium on gravity, geoid and height systems GGHS 2012, Venice, Italy. https://doi.org/10.13140/RG.2.1.4688.6807

  • Mikhail EM, Ackermann F (1976) Observations and least squares. IEP-A Dun-Donnelley Publisher, New York

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133. https://doi.org/10.1007/s001900050278

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

    Google Scholar 

  • Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber Th, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. https://doi.org/10.1029/2010GL044906

    Article  Google Scholar 

  • Pail R, Fecher T, Barnes D, Factor JF, Holmes SA, Gruber T, Zingerle P (2017) Short note: the experimental geopotential model XGM2016. J Geod 92:443–451. https://doi.org/10.1007/s00190-017-1070-6

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2007) Earth gravitational model to degree 2160: status and progress. In: Presented at the XXIV general assembly of the international union of geodesy and geophysics, Perugia, Italy 2–13

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011JB008916

    Article  Google Scholar 

  • Petit G, Luzum B, (2010) IERS Conventions (2010). IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt and Main

  • Poutanen M, Rózsa S (2020) The geodesist’s handbook 2020. J Geod 94:109. https://doi.org/10.1007/s00190-020-01434-z

    Article  Google Scholar 

  • Pujol MI, Schaeffer P, Faugère Y, Raynal M, Dibarboure G, Picot N (2018) Gauging the improvement of recent mean sea surface models: a new approach for identifying and quantifying their errors. J Geophys Res Oceans 123:5889–5911. https://doi.org/10.1029/2017JC013503

    Article  Google Scholar 

  • Rapp RH (1995) Equatorial radius estimates from TOPEX altimeter data. Festschrift Erwin Groten, Institute of Geodesy and Navigation, University FAF Munich, Neubiberg, pp 90–97

  • Rapp RH, Nerem RS, Shum CK, Klosko SM, Williamson RG (1991) Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission. NASA Technical Memorandum 100775

  • Sacerdote F, Sansò F (1986) The scalar boundary value problem of physical geodesy. Manu Geod 11:15–28

  • Sacerdote F, Sansò F (2001) Wo: a story of the height datum problem. In: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, vol 241, pp 49–56

  • Sacerdote F, Sansò F (2004) Geodetic boundary value problems and the height datum problem. IAG Symp Ser 127:174–178. https://doi.org/10.1007/978-3-662-10735-5_23

    Article  Google Scholar 

  • Sánchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. IAG Symp Ser 130:638–645. https://doi.org/10.1007/978-3-540-49350-1_92

    Article  Google Scholar 

  • Sánchez L (2009) Strategy to establish a global vertical reference system. IAG Symp Ser 134:273–278. https://doi.org/10.1007/978-3-642-00860-3_42

    Article  Google Scholar 

  • Sánchez L (2012) Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System. J Geod Sci 2:325–342. https://doi.org/10.2478/v10156-012-0002-x

    Article  Google Scholar 

  • Sánchez L, Dayoub N, Čunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtíšková M, Šíma Z (2014) \(W_0\) estimates in the frame of the GGOS Working Group on Vertical Datum Standardisation. IAG Symp Ser 141:203–210. https://doi.org/10.1007/978-3-319-10837-7_26

    Article  Google Scholar 

  • Sánchez L, Čunderlík R, Dayoub N, Mikula K, Minarechová Z, Šíma Z, Vatrt V, Vojtíšková M (2016) A conventional value for the geoid reference potential \(W_0\). J Geod 90:815–835. https://doi.org/10.1007/s00190-016-0913-x

    Article  Google Scholar 

  • Schaeffer P, Faugère Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Mar Geod 35:3–19. https://doi.org/10.1080/01490419.2012.718231

    Article  Google Scholar 

  • Sjöberg LE (2007) The topographic bias by analytical continuation in physical geodesy. J Geod 81:345–350. https://doi.org/10.1007/s00190-006-0112-2

  • Sjöberg LE (2009) On the topographic bias in geoid determination by the external gravity field. J Geod 83:967–972. https://doi.org/10.1007/s00190-009-0314-5

    Article  Google Scholar 

  • Sjöberg LE (2013) New solutions for the geoid potential \(W_0\) and the Mean Earth Ellipsoid dimensions. J Geod Sci 3:258–265. https://doi.org/10.2478/jogs-2013-0031

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) The numerical study of the analytical downward continuation error in geoid computation by EGM2008. J Geod Sci 1:2–8. https://doi.org/10.2478/v10156-010-0001-8

    Article  Google Scholar 

  • Tscherning CC (ed) (1984) The Geodesist’s handbook, resolutions of the International Association of Geodesy adopted at the XVIII General Assembly of the International Union of Geodesy and Geophysics, Hamburg 1983. Bull Geod 58(3)

  • Weatherall P, Marks KM, Jakobsson M, Schmitt T, Tani S, Arndt JE, Rovere M, Chayes D, Ferrini V, Wigley R (2015) A new digital bathymetric model of the world’s oceans. Earth Space Sci 2:331–345. https://doi.org/10.1002/2015EA000107

    Article  Google Scholar 

Download references

Acknowledgements

We thank the DTU space and the CNES_CLS for their productions such as the MSS models and their free distribution to the scientific community. We also thank GEBCO for providing the bathymetry models and free access to them. Special thanks go to Prof. Ole Baltazar Andersen at the DTU space for kindly providing the models required for this study. We would also like to thank the ICGEM for free access to the GGMs. We are very grateful to the Editor-in-Chief and the Associate Editor for handling our manuscript and providing helpful comments. We are also very grateful to the anonymous reviewers for their valuable and constructive comments which helped us to improve the initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RK designed and performed the research. RK and AAA analyzed the results. RK wrote the draft manuscript. AAA commented on the draft. RK finalized the manuscript.

Corresponding author

Correspondence to Roohollah Karimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, R., Ardalan, A.A. Geoid’s potential \(W_0\) from a weighted constrained optimization problem. J Geod 96, 94 (2022). https://doi.org/10.1007/s00190-022-01686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-022-01686-x

Keywords

Navigation