Skip to main content
Log in

Short note: the experimental geopotential model XGM2016

  • Short Note
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

As a precursor study for the upcoming combined Earth Gravitational Model 2020 (EGM2020), the Experimental Gravity Field Model XGM2016, parameterized as a spherical harmonic series up to degree and order 719, is computed. XGM2016 shares the same combination methodology as its predecessor model GOCO05c (Fecher et al. in Surv Geophys 38(3): 571–590, 2017. doi:10.1007/s10712-016-9406-y). The main difference between these models is that XGM2016 is supported by an improved terrestrial data set of \(15^\prime \times 15^\prime \) gravity anomaly area-means provided by the United States National Geospatial-Intelligence Agency (NGA), resulting in significant upgrades compared to existing combined gravity field models, especially in continental areas such as South America, Africa, parts of Asia, and Antarctica. A combination strategy of relative regional weighting provides for improved performance in near-coastal ocean regions, including regions where the altimetric data are mostly unchanged from previous models. Comparing cumulative height anomalies, from both EGM2008 and XGM2016 at degree/order 719, yields differences of 26 cm in Africa and 40 cm in South America. These differences result from including additional information of satellite data, as well as from the improved ground data in these regions. XGM2016 also yields a smoother Mean Dynamic Topography with significantly reduced artifacts, which indicates an improved modeling of the ocean areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. In: Jin S, Barzaghi R (eds) IGFS 2014: International association of geodesy symposia, vol 144. Springer, Berlin, pp 111–121. doi:10.1007/1345_2015_182

    Chapter  Google Scholar 

  • Bingham RJ, Haines K, Hughes CW (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. J Atmos Ocean Techol 25(10):1808–1822. doi:10.1175/2008JTECHO568.1

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G et al (eds) Earth gravity field from space–from sensors to earth science. Space Sciences Series of ISSI, vol 18. Kluwer Academic Publishers, Dordrecht, pp 419–432. doi:10.1007/978-94-017-1333-7_36

    Chapter  Google Scholar 

  • Ebbing J, Bouman J, Fuchs M, Lieb V, Haagmans R, Meekes JAC, Fattah RA (2013) Advancements in satellite gravity gradient data for crustal studies. Lead Edge 32(8):900–906. doi:10.1190/tle32080900.1

    Article  Google Scholar 

  • Fecher T, Pail R, Gruber T (2017) GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 38(3):571–590. doi:10.1007/s10712-016-9406-y

    Article  Google Scholar 

  • Förste C, Bruinsma S, Abrykosov O, Flechtner F, Marty JC, Lemoine JM, Dahle C, Neumayer KH, Barthelmes F, König R, Biancale R (2014) EIGEN-6C4—the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. Geophys Res Abstr 16, EGU2014-3707, General Assembly European Geosciences Union, Vienna, Austria

  • Gruber T, Bode A, Reigber C, Schwintzer P, Balmino G, Biancale R, Lemoine JM (2000) GRIM5-C1: combination solution of the global gravity field to degree and order 120. Geophys Res Lett 27(24):4005–4008

  • Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860. doi:10.1007/s00190-011-0486-7

    Article  Google Scholar 

  • Hirt C, Rexer M (2015) Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree 10,800 spherical harmonics. Int J Appl Earth Observ Geoinf 39:103–112. doi:10.1016/j.jag.2015.03.001

    Article  Google Scholar 

  • Li X, Crowley JW, Holmes SA, Wang YM (2016) The contribution of the GRAV-D airborne gravity to geoid determination in the Great Lakes region. Geophys Res Lett 43:4358–4365. doi:10.1002/2016GL068374

    Article  Google Scholar 

  • Ihde J, Sánchez L, Barzaghi R, Drewes H, Förste C, Gruber T, Liebsch G, Marti U, Pail R, Sideris M (2017) Definition and proposed realization of the international height reference system (IHRS). Surv Geophys 38:549–570. doi:10.1007/s10712-017-9409-3

    Article  Google Scholar 

  • Mayer-Gürr T (2007) ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. In: Presentation at the joint international GSTM and SPP symposium, Potsdam, Germany, 15–17 October

  • Mayer-Guerr T, the GOCO Consortium (2015) The combined satellite gravity field model GOCO05s. Geophys Res Abstr 17, EGU2015-12364, Vienna, Austria 2015

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res. doi:10.1029/2011JB008916

    Google Scholar 

  • Scheinert M, Ferraccioli F, Schwabe J, Bell R, Studinger M, Damaske D, Jokat W, Aleshkova N, Jordan T, Leitchenkov G, Blankenship D, Damiani T, Young D, Cochran J, Richter T (2016) New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys Res Lett 43(2):600–610. doi:10.1002/2015GL067439

    Article  Google Scholar 

  • Shako R, Förste C, Abrykosov O, Bruinsma S, Marty J-C, Lemoine J-M, Flechtner F, Neumayer K-H, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space–CHAMP, GRACE, GOCE and future missions, GEOTECHNOLOGIEN Science Report no 20, Advanced Technologies in Earth Sciences). Springer, Berlin, pp 155–161. doi:10.1007/978-3-642-32135-1_20

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophy Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the provision of extensive supercomputing resources by the Leibniz Supercomputing Centre (LRZ; Address: Boltzmannstraße 1, 85748 Garching bei München, Germany). We also acknowledge the valuable comments of three unknown reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pail.

Additional information

We dedicate this paper in memory of our co-author Simon Holmes, who passed away unexpectedly just a few days after the first submission of this manuscript. With him we have lost not only a great scientist with unique expertise in gravity data processing, but also a smart colleague and great friend. Simon, we will miss you.

S.A. Holmes: Passed away on 26 May 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pail, R., Fecher, T., Barnes, D. et al. Short note: the experimental geopotential model XGM2016. J Geod 92, 443–451 (2018). https://doi.org/10.1007/s00190-017-1070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1070-6

Keywords

Navigation