Abstract
The troposphere is considered as one of the major error sources in space geodetic techniques. Thus, accurate troposphere delay models are essential to provide highquality products, such as reference frames, satellite orbits, or Earth rotation parameters. In this paper, a new troposphere delay model for satellite laser ranging, the Vienna Mapping Functions 3 for optical frequencies (VMF3o), is introduced. The model parameters are derived from raytraced delays generated by an inhouse raytracing software. VMF3o comprises not only zenith delays and mapping functions, but also linear horizontal gradients, which are not part of the standard SLR analysis yet. The model parameters are dedicated to a signal wavelength of 532 nm. Since some SLR stations operate also with other wavelengths, VMF3o provides a correction formula to transform the model parameters to any requested wavelength between 350 and 1064 nm. A test demonstrates that the correction formula approximates slant delays calculated at different wavelengths very accurately. The remaining error for slant delays at a wavelength of 1064 nm adds up to only a few millimetres at \(10^{\circ }\) elevation angle. A comparison study of the modelled delays that are derived from VMF3o and raytraced delays was carried out to examine the quality of the model approach. The remaining differences of modelled and raytraced delays are expressed as mean absolute error. At \(5^{\circ }\) elevation angle, the mean absolute error is only a few millimetres. At \(10^{\circ }\) elevation angle, it is at the 1 mm level. The results of the comparison also reveal that introducing linear horizontal gradients reduces the mean absolute error by more than 80% for low elevation angles.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
The effect of the neutral atmosphere, in the following referred to as troposphere, on electromagnetic waves causes a delay of the signal. This delay is one of the major error sources in space geodetic techniques. For techniques operating with microwave signals, a typical value for the hydrostatic component of the delay is 2.3 m in zenith direction for a station at sea level and average meteorological conditions (Nilsson et al. 2013). The nonhydrostatic component depends on the amount of water vapour in the troposphere and the delay in zenith direction can reach up to several decimetres in equatorial regions (Nilsson et al. 2013).
A common way to correct for troposphere delays is to estimate them as a further parameter, additionally to parameters such as station coordinates, satellite orbit parameters or Earth rotation parameters (ERP). Another approach is to apply a priori zenith hydrostatic delays (ZHDs), which are easier to model due to their high predictability, and to estimate only the nonhydrostatic component of the zenith delay.
In satellite laser ranging (SLR), which is operating on optical wavelengths, the ZHD is slightly larger compared to the ZHD in microwave techniques. However, optical wavelengths are less sensitive to water vapour resulting in a nonhydrostatic component of only a few millimetres in zenith direction. Since SLR has fewer observations available compared to other space geodetic techniques, such as Global Navigation Satellite Systems (GNSS) or very long baseline interferometry (VLBI), troposphere delays are commonly not estimated, but need to be modelled. Due to the rather small nonhydrostatic component, which is less predictable than the ZHD, troposphere delay models can be assumed to be more accurate for SLR than for microwavebased techniques.
The current approach for modelling troposphere delays in SLR is to determine the total delay in zenith direction and to project this delay to the elevation angle of the observation, subsequently, using an isotropic total mapping function (MF). More details to the currently used model are given in Sect. 2. This approach does not allow the consideration of horizontal asymmetries and includes no vertical information of the troposphere.
The Refraction Study Group [RSG, see Noll and Tyahla (2012)], launched by the International Laser Ranging Service (ILRS) in the year 2000, examined shortcomings in the previously used model by Marini and Murray (1973). The inadequate dispersion model of the mapping function was identified as the main error source resulting in errors at the centimetre level at \(15^{\circ }\) elevation angle, depending on the wavelength. The study group also suggested the inclusion of horizontal gradients based on a study by Gardner (1977), who estimated gradient corrections at the order of 2 cm at \(10^{\circ }\) elevation angle.
A study carried out by Hulley and Pavlis (2007) investigates the effects of horizontal refractivity gradients derived from raytraced delays on SLR observations. They find that the annual mean of north–south and east–west gradients in absolute magnitude is at the level of a few millimetres at \(10^{\circ }\) elevation angle and the maximum can reach up to 50 mm at some stations for the same elevation angle. Furthermore, they examine the effect of introducing horizontal gradients on observation residuals, which leads to an improvement of variance differences of roughly 10%. When applying a total correction derived from raytraced delays, also including horizontal gradients, the variance differences are improved by up to 40% or more.
A different approach is presented by Drozdzewski and Sośnica (2018), who investigate the possibility of directly estimating horizontal gradients from SLR observations. Although the estimated gradients strongly correlate with estimated station coordinates in case of a low number of available SLR observations, the authors report a reduced formal error of unit weight when estimating horizontal gradients. The results are also compared to horizontal gradients derived from GNSS observations as well as horizontal gradients derived from numerical weather models. In a longterm analysis, the best agreement was found between SLRderived gradients and the hydrostatic component of horizontal gradients derived from numerical weather models.
Previous work to the model presented in this paper was done by Boisits et al. (2018). A preliminary version of VMF3o provides zenith delays and MF coefficients derived from raytraced delays on a global grid. Tests were carried out using SLR observations to the LAGEOS1/2 satellites (Pearlman et al. 2019a, b) for the year 2005. Applying the VMF3o MF coefficients results in a reduction of observation residuals especially at low elevation angles. Boisits et al. (2018) also investigated the effect of applying not only VMF3o MF coefficients, but also the VMF3o zenith wet delay derived from raytraced delays to SLR observations. This approach results in an even more distinct impact on observation residuals.
In a recent study, Drozdzewski et al. (2019) examine the effect of the Potsdam Mapping Function (PMF) (Zus et al. 2015) on SLRderived products. In this study, PMF time series including linear as well as nonlinear horizontal gradients are generated and applied to 11 years of SLR observation data. The authors report a systematic effect on SLRderived products and an improved consistency between pole coordinates derived from SLR observations and other space geodetic techniques. Regarding station coordinates, differences of up to 2 mm in the north component are found. Thus, the authors recommend to extend the current troposphere delay model for SLR by considering horizontal gradients.
This paper presents the first rigorous description of the final VMF3o model. The model parameters are based on raytraced delays, as were the parameters of the preliminary version (Boisits et al. 2018). Since the grid interpolation is suspected to be an error source, sitespecific VMF3o parameters are now provided. Additionally, linear horizontal gradients are introduced as standard. The zenith total delay (ZTD), the total MF, and the linear horizontal gradients are split into a hydrostatic and a wet component. This allows for numerous scientific investigations, such as estimating zenith wet delays only or estimating a constant offset of the zenith delay components. In this way, possible biases in zenith delays could be revealed or parameters, such as the currently used value for the \(CO_{2}\) content in the atmosphere, could be revised. Furthermore, the procedure of estimating VMF3o parameters is in full consistency with Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm 2017) and the discrete horizontal gradients model (GRAD) (Landskron and Böhm 2018) for space geodetic techniques operating with microwave signals. This consistency could play an important role when investigating intertechnique biases.
Section 2 of this paper gives an overview of the theoretical background and the current status of troposphere delay modelling for optical wavelengths. Section 3 describes the determination of VMF3o parameters as well as the derivation of a wavelength correction formula based on raytraced delays at multiple wavelengths. Section 4 comprises a model validation and a summary of VMF3o products and their availability. Conclusions are provided in Sect. 5.
2 Troposphere delay modelling in SLR
Electromagnetic waves, such as laser signals, experience a propagation delay when travelling through the troposphere. The delay in zenith direction is defined as (e.g. Mendes and Pavlis 2004)
with the path S through the troposphere in zenith direction, dz in length units, and the total group refractivity of moist air \(N = (n1)\cdot 10^{6}\), where n denotes the total refractive index of moist air. The zenith total delay can be split into a hydrostatic and wet component as follows:
where the subscripts h and w denote the hydrostatic and wet component of the delay \(\Delta L\) and the refractivity N, respectively.
The troposphere delay at a given elevation angle, also referred to as slant total delay (STD), can be modelled as (e.g. Nilsson et al. 2013)
where also the mapping function is split into a hydrostatic component \(MF_{h}\) and a wet component \(MF_{w}\), both as a function of the elevation angle \(\varepsilon \). Since the contribution of the wet component is very small compared to the hydrostatic part at optical wavelengths, the following expression is more common in SLR analysis:
with \(MF(\varepsilon )\) as total mapping function.
As recommended by the International Earth Rotation and Reference Systems Service (IERS) in the IERS Conventions 2010 (Petit and Luzum 2010), the hydrostatic and wet components of the troposphere delay in zenith direction are calculated following (Mendes and Pavlis 2004):
where \(\Delta L^{z}_{h}\) is the hydrostatic and \(\Delta L^{z}_{w}\) is the wet zenith delay in metres, \(f_{s}\) is a function of the station latitude \(\Phi \) and the geodetic height of the station H, \(P_{s}\), and \(e_{s}\) denote the surface pressure and the surface water vapour pressure in hPa, respectively. The expression \(f_{h}\) represents the hydrostatic and \(f_{nh}\) the wet (nonhydrostatic) component of the dispersion equation as a function of the wavelength \(\lambda \) in \(\mu \)m (see Mendes and Pavlis 2004).
Following Marini (1972), the recommended mapping function is expressed as continued fraction in a truncated form, as proposed by Herring (1992):
The coefficients a, b, and c are calculated following Mendes et al. (2002) and are given as a function of the station latitude \(\Phi \), the geodetic height of the station H, and the temperature at the station \(t_{s}\). In the following, this model for calculating the zenith delay and the corresponding MF will be referred to as Mendes–Pavlis, or short MP model.
As described above, the MP model is based on meteorological data records at the SLR station. This allows a very accurate estimation especially of the zenith hydrostatic delay (ZHD), where the vertical profile can be easily modelled using the surface pressure at the site.
However, the MP model assumes horizontal symmetry, which is a simplification of true conditions. First, the troposphere is thicker in warmer (equatorial) regions than in cold (polar) regions (Mohanakumar 2008). Second, the refractivity of the troposphere is lower at the thermal equator than at the poles (Gardner 1977). These effects result in systematic variations in the troposphere delay dependent on the azimuth angle. Other azimuthal asymmetries originate, e.g. from weather conditions such as storms, that cause local deviations from the hydrostatic equilibrium (Hauser 1989).
Atmospheric azimuthal asymmetries are commonly modelled following Chen and Herring (1997) by introducing linear horizontal gradients:
where \(\Delta L_{0}(\varepsilon )\) denotes the isotropic component computed using Eq. 3 and the second term on the right accounts for the anisotropic part, with the north–south component of the gradients \(G_{n}\), the east–west component \(G_{e}\), azimuth angle a and a dedicated mapping function \(MF_{g}(\varepsilon )\). This mapping function can be expressed as:
where Chen and Herring (1997) find \(C=0.0031\) for the hydrostatic and \(C=0.0007\) for the wet component of the microwave gradients. This gradient model is commonly used in GNSS and VLBI, but did not become prevalent in SLR analysis.
3 Development of a new troposphere delay model
This section presents the parameters of VMF3o and their derivation from raytraced delays. VMF3o comprises zenith delays, mapping functions, and linear horizontal gradients for the hydrostatic and the wet component of the troposphere delay, as well as a set of coefficients to transform all VMF3o parameters to an arbitrary wavelength within the optical frequency range (see Sect. 3.4).
3.1 Raytracing at optical frequencies
The raytracing software RADIATE (Hofmeister and Böhm 2017) is part of the Vienna VLBI and Satellite Software (VieVS) developed at TU Wien (Böhm et al. 2018). The determination of the delays is based on a 2D piecewise linear raytracing approach (Hobiger et al. 2008) using numerical weather models (NWMs) provided by the European Centre for MediumRange Weather Forecasts (ECMWF). The NWMs that are used for deriving VMF3o parameters have a temporal resolution of 6h, a horizontal resolution of \(1^{\circ }\times 1^{\circ }\) and a vertical resolution of 25 pressure levels (for a more detailed description of the ECMWF NWMs, see https://www.ecmwf.int/en/forecasts/datasets/seti).
RADIATE was designed to determine raytraced delays in the microwave range. In order to derive VMF3o parameters for SLR, a new option for raytracing at optical wavelengths was implemented. Since the majority of SLR stations operates at a wavelength of 532 nm (Noll and Tyahla 2019), this wavelength is used to generate optical raytraced delays and deriving VMF3o parameters.
To determine raytraced delays at any arbitrary location as well as any azimuth and elevation angle, a dense 3D refractivity field is generated based on the meteorological parameters of the NWM. Computing a hydrostatic and a wet refractivity field separately allows the determination of the hydrostatic and the wet component of the troposphere delay. In order to create optical refractivity fields, the equations for hydrostatic refractivity \(N_{h}\) and wet refractivity \(N_{nh}\) following Mendes and Pavlis (2004) are evaluated:
where \(N_{gaxs}\) is the group refractive index of dry air (Ciddor 1996), \(T_{d}\) is the temperature of dry air, \(P_{d}\) is the pressure of dry air, \(Z_{d}\) is the compressibility factor of dry air, \(R_{d}\) is the mean specific gas constant of dry air, \(\rho \) is the density of moist air, \(N_{gws}\) is the group refractive index of water vapour (Ciddor 1996), \(\rho _{w}\) is the density of water vapour, \(\rho _{ws}\) is the density of water vapour at standard conditions, Z is the compressibility factor of moist air, e is the water vapour pressure of moist air, T is the temperature of moist air, \(M_{w}\) is the molar mass of water vapour, and \(M_{d}\) is the molar mass of dry air. For the computation of \(N_{gaxs}\) and \(N_{gws}\) following Mendes and Pavlis (2004), the \(CO_{2}\) content is set to 375ppm as described in the IERS Conventions (Petit and Luzum 2010) and the wavelength is set to 532 nm. Thus, the generated raytraced delays are valid for optical signals at 532 nm wavelength.
3.2 New mapping functions for SLR
Equation 3 forms the basis of the mapping functions of VMF3o. The hydrostatic and the wet mapping function are determined by their coefficients a, b, and c as described in Eq. 7.
Following the approach of VMF3, the b and c coefficients are estimated only once and not per epoch to ensure that the main parameters of VMF3o are well determined. The properties of the raytraced delays generated for this purpose are listed in Table 1. Since low elevation angles are most sensitive in terms of separating atmospheric effects from other error sources, elevation angles of \(15^{\circ }\) and below are used for the derivation of VMF3o parameters.
The b and c coefficients of the hydrostatic as well as the wet mapping function are estimated in a least squares adjustment using the following fit formula (Lagler et al. 2013), where p represents any of the \(b_{h}\), \(b_{w}\), \(c_{h}\), or \(c_{w}\) coefficients:
where \(A_{0}\) is the mean value, \(A_{1}\) and \(B_{1}\) are the annual amplitudes, and \(A_{2}\) and \(B_{2}\) are the semiannual amplitudes. For this purpose, the temporal resolution of monthly mean values and the horizontal resolution of \(5^{\circ }x5^{\circ }\) (see Table 1) is absolutely sufficient and the computation time is restrained to a reasonable length. The coefficients of the fit formula above are approximated using spherical harmonics (SH) up to degree and order 12. Thus, \(b_{h}\), \(b_{w}\), \(c_{h}\), and \(c_{w}\) can be computed as a function of station location and time. This allows to easily add sites to the regular processing of stationwise VMF3o parameters without recalculating b and c coefficients.
While the b and c coefficients capture only low frequency variations, \(a_{h}\) and \(a_{w}\) reflect shortterm changes in the troposphere. The raytraced delays used for estimating the a coefficients are generated with the properties listed in Table 2. The a coefficients of the isotropic mapping functions \(MF_{h}\) and \(MF_{w}\) are then determined by solving Eq. 7 for a and averaging over all azimuth angles. Unlike the b and c coefficients, the a coefficients are sitespecific parameters to avoid potential error sources such as grid interpolation and height extrapolation.
3.3 Horizontal gradients for SLR
Generating raytraced delays at several azimuth angles (see Table 2) allows not only the derivation of isotropic mapping functions, but also the determination of linear horizontal gradients. With the mapping functions obtained in Sect. 3.2 the isotropic component of the troposphere delay \(\Delta L_{0}(\varepsilon )\) according to Eq. 8 can be calculated. When subtracting \(\Delta L_{0}(\varepsilon )\) from the slant delays at each azimuth angle, residuals \(\Delta L_{res}(\varepsilon ,a)\) are determined containing only the anisotropic part of the delays and Eq. 8 can be expressed as (Landskron and Böhm 2018):
The residuals can be formed for the hydrostatic as well as the wet component of the total delay. Subsequently, the north and east component of the hydrostatic gradients \(G_{n,h}\) and \(G_{e,h}\), and the wet gradients \(G_{n,w}\) and \(G_{e,w}\) are estimated in a least squares adjustment based on Eq. 13.
Typical values for the north and east components of horizontal gradients are several tenths of a millimetre, thus, causing azimuthal variations at the centimetre level when mapped to low elevation angles. For microwave signals, the hydrostatic and wet components of the gradients are at the same order of magnitude. For optical wavelengths, however, the wet component is significantly smaller compared to the hydrostatic component, as was already reported by Hulley and Pavlis (2007). Here, the horizontal gradients are split into a hydrostatic and a wet component in consistency with the general concept of VMF3o allowing more flexibility for scientific investigations.
3.4 Wavelength correction formula
As described in Sect. 3.1, most SLR stations operate with laser signals at 532 nm, and hence, the raytraced delays are generated using this wavelength for calculating the refractivity fields. Consequently, VMF3o parameters are valid for this specific wavelength. Since some stations also use other frequencies ranging from blue to nearinfrared (NIR), the VMF3o model includes a correction formula to transform the parameters from 532 nm to other wavelengths. To derive such a formula, raytraced delays at ten different wavelengths between 350 and 1064 nm are generated. The respective wavelengths and other properties of the delays are listed in Tables 2 and 3.
Based on these data, ten sets of VMF3o parameters (one for each wavelength) were calculated. When comparing the results for each wavelength to their reference at 532 nm, the frequency effect becomes most obvious for the ZHD. The differences between the ZHD at 532 nm and 1064 nm are at the 10 cm level, which cannot be neglected. The differences for the zenith wet delay (ZWD) are at the submillimetre level, causing deviations of several millimetres when mapped to low elevation angles. The differences for the mapping function coefficients and the horizontal gradients result in errors of up to several centimetres at low elevation angles. Hence, VMF3o parameters need to be corrected for observations at different wavelengths.
For the computation of the wavelength correction formula, each value was divided by its reference value at 532 nm and then averaged over all epochs and all stations. The result is one correction factor \(p_{\lambda }/p_{532}\) per wavelength \(\lambda \) for each VMF3o parameter p. The following fit formula was found to approximate the discrete values of the correction factors:
where \(\lambda \) is the target wavelength in nm and the coefficients A, B, and C are estimated in a least squares adjustment, independently for each parameter of VMF3o. The values found for A, B, and C are listed in Table 4. Applying the correction factor cf to any parameter \(p_{532}\) of VMF3o yields the parameter \(p_{\lambda }\) at the target wavelength \(\lambda \):
The discrete correction factors as well as the fitted curve using Eq. 14 are illustrated for the ZHD in Fig. 1 and for the ZWD in Fig. 2, exemplarily. Due to a limited number of decimal places in the output files, the correction factors of VMF3o parameters of small magnitude, such as the ZWD and the gradients, are less well determined compared to, e.g. the correction factors for the ZHD. Still, the wavelength dependency causes a clearly visible signal.
For verification, the obtained correction factors are compared to reference values based on the dispersion equations of the MP model (Mendes and Pavlis 2004). For this purpose, time series of ZHD and ZWD are calculated for the wavelengths listed in Table 3 using the MP model. Subsequently, discrete correction factors are computed in the same manner as described above. The values obtained from the MP model and the time series of VMF3o parameters, respectively, match very well, especially for the correction factors for the ZHD (see Figs. 1, 2).
To further examine the accuracy of the correction formula, the remaining errors between the corrected parameters using Eqs. 14 and 15 and the parameters obtained directly from raytraced delays at the respective wavelength are formed. For a wavelength of 1064 nm, the residuals of the ZHD are below 0.5 mm and for the ZWD at the 0.1 mm level. The residuals of the coefficients \(a_{h}\) and \(a_{w}\) are mapped to a slant delay at \(10^{\circ }\) elevation angle causing differences below 0.3 mm and 0.003 mm, respectively. The gradients are also mapped to a slant delay at \(10^{\circ }\) elevation angle where they cause differences mostly smaller than 0.1 mm in direction of the largest amplitude. In total, the correction formula approximates the parameters directly retrieved from raytracing at the respective wavelength very accurately, with a remaining error of only a few millimetres at \(10^{\circ }\) elevation angle, mostly due to the residuals of the ZHD.
4 Validation and products of VMF3o
Section 4.1 examines the differences of the meteorological parameters pressure, temperature, and water vapour pressure, when (1) derived from NWMs and (2) measured at the site, as well as their impact on zenith delays and mapping functions. Section 4.2 presents a comparison of the delays computed using VMF3o, referred to as modelled delays, with raytraced delays as a first validation of VMF3o. This allows to examine the performance of the model approach in general. Conclusively, all VMF3o products and their availability are listed in Sect. 4.3.
4.1 Comparison of meteorological parameters
To get an idea of the accuracy of the pressure, temperature, and water vapour pressure (WVP) values from NWMs, they are compared to the meteorological measurements registered at SLR stations. The meteorological records are extracted from normal point files provided by the ILRS (Pearlman et al. 2019a). For this purpose, the monthly files containing the observations to LAGEOS1 in the year 2017 are used. In the following, these values will be referred to as site values. The sitespecific values of pressure, temperature, and WVP derived from NWMs are provided by VMF3o with a temporal resolution of 6h (see Sect. 4.3). For the comparison, they are calculated for the same epochs as the site values using a linear interpolation procedure. In the following, these values will be referred to as NWM values.
Figure 3 illustrates the pressure differences of site values and NWM values for the stations 7090 (Yarragadee, Australia) and 7839 (Graz, Austria). The residuals of each day in the year 2017 are stacked to get an idea of the daily variations. For both stations, a remaining semidiurnal signal can be identified with an amplitude below 3 hPa. 1 hPa corresponds to an error of about 2.5 mm in ZHD. This signal does not decrease, when using a spline or cubic interpolation procedure instead of linear interpolation.
Figure 4 depicts the stacked differences in temperature for the stations 7090 (Yarragadee, Australia) and 7839 (Graz, Austria). Here, a diurnal signal with a maximum of about \(9\,^\circ \hbox {C}\) can be identified. An error of \(1\,^\circ \hbox {C}\) translates to deviations of approximately 0.6 mm in the STD at \(10^{\circ }\) elevation angle. This signal also does not decrease, when using a spline or cubic interpolation procedure.
Figure 5 illustrates the stacked differences of WVP at the same stations. The results are also affected by the differences in temperature, when converting relative humidity to WVP. No clear periodic signals can be identified. The residuals range up to 5 hPa, which corresponds to approximately 1 mm in ZWD.
Table 5 provides the minimum and maximum values for bias and standard deviation of the differences when looking at all stations. Some values denoted as outliers are not listed in Table 5. This includes a pressure bias of 11.2 hPa at station 1879 (Altay, Russia), a pressure bias of 15.6 hPa at station 1889 (Zelenchukskaya, Russia), a pressure bias of 83.7 hPa at station 1890 (Badary, Russia), a temperature bias of \(13.1\,^\circ \hbox {C}\) at station 1890 (Badary, Russia), as well as the consequential ZHD biases. A standard deviation of 14.5 hPa for the differences in pressure is found at station 7119 (Haleakala, Hawaii), which is also not included in Table 5.
Generally, meteorological data recorded at the station are expected to be more reliable. However, NWMs as additional source provide valuable information that can help to reveal biases originating in the meteorological sensors at the SLR sites. Furthermore, NWMs smoothen potential extreme local conditions, that are not representative for the whole column above the site, and do not depend on the daily rate of the sensors.
The results from the comparison indicate that the ZHD based on local records can be assumed to be more accurate. However, the computation of both, mapping functions and ZWD, based on raytracing could benefit from the vertical information provided by NWMs. A positive effect of raytraced ZWDs was already reported by Boisits et al. (2018). Closer investigations on that issue still need to be carried out.
4.2 Modelled delays versus raytraced delays
A comparison of modelled delays and raytraced delays was carried out to assess how precisely the VMF3o model approach represents raytraced delays. VMF3o comprises zenith delays, mapping functions, and linear horizontal gradients for the hydrostatic and wet component of the delay. However, gradients of higher order are neglected. Landskron and Böhm (2018) find that secondorder and thirdorder gradients further reduce the remaining differences, but only to a small degree. Furthermore, Drozdzewski et al. (2019) find that secondorder horizontal gradients have only a small impact on SLR products and can be neglected, since SLR stations mainly operate during good weather conditions.
To investigate the remaining differences between the modelled and the raytraced delays, 1460 epochs (4 epochs per day) of data in the year 2017 are used. The properties of the raytraced delays generated for this purpose are listed in Tables 2 and 6. For the modelled delays, zenith delays, mapping functions, and linear horizontal gradients of VMF3o are applied and slant total delays at the azimuth and elevation angles according to Tables 2 and 6 are computed.
The raytraced delays serve as reference values in this study. For the comparison, mean absolute errors are formed. Table 7 lists the results for the slant total delay at station 7839 (Graz, Austria). At \(5^{\circ }\) elevation angle, the mean absolute error ranges up to 5.5 mm and the effects of neglecting horizontal gradients of higher order are visible. However, at \(10^{\circ }\) elevation angle, the remaining differences are only at the 1 mm level and the effect of higherorder gradients decreases rapidly with increasing elevation angle.
Figure 6 illustrates the impact of applying gradients when modelling troposphere delays at low elevation angles. The figure depicts the results for station 7839 (Graz, Austria). At \(5^{\circ }\) elevation angle, the mean differences between modelled and raytraced delays range up to 20 mm and more when neglecting linear horizontal gradients. The mean error is reduced to less than 5 mm when applying gradients. These values roughly agree with the gradient corrections already found by Gardner (1977).
Looking at the mean values over all stations and all azimuth angles yields similar deviations. The results are listed in Table 8. At \(5^{\circ }\) elevation angle, the mean absolute error is reduced from 18.2 to 3.1 mm, when applying gradients. This corresponds to an improvement by 83%. At \(10^{\circ }\) elevation angle, the mean absolute error is reduced by 85% from 5.9 to 0.9 mm. When applying the mapping function of the conventional MP model for comparison, the differences to the raytraced delays increase even compared to VMF3o with no gradients applied (see Table 8).
4.3 Availability of VMF3o products
VMF3o includes the following parameters:

Zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD),

Coefficients \(a_{h}\), \(b_{h}\), and \(c_{h}\) of the hydrostatic component of the mapping function according to Eq. 7,

Coefficients \(a_{w}\), \(b_{w}\), and \(c_{w}\) of the wet component of the mapping function according to Eq. 7,

Hydrostatic north–south component \(G_{n,h}\) and hydrostatic east–west component \(G_{e,h}\) of the linear horizontal gradient model according to Eq. 8,

Wet north–south component \(G_{n,w}\) and wet east–west component \(G_{e,w}\) of the linear horizontal gradient model according to Eq. 8,

Coefficients A, B, and C of the wavelength correction formula according to Eqs. 14 and 15.
All products and auxiliary material can be found at the VMF Server under vmf.geo.tuwien.ac.at. The b and c coefficients can be calculated using the routine vmf3o_b_c.m and the SH coefficients stored in separate text files. The parameters \(a_{h}\), \(a_{w}\), ZHD, ZWD, \(G_{n,h}\), \(G_{e,h}\), \(G_{n,w}\), and \(G_{e,w}\) are provided in socalled VMF3o files (.vmf3o extension). Pressure, temperature, and water vapour pressure from the NWM are listed as additional information. VMF3o files are published once per day and contain four epochs corresponding to a temporal resolution of 6 h. A linear interpolation between these epochs is adequate (see Sect. 4.1). The parameters are calculated stationwise, so no grid interpolation is necessary. The station list includes all past and active SLR stations listed in the station coordinate file slr.ell. This file is regularly updated, if new stations are added to the latest version of the SLRF2014 SINEX file (Noll et al. 2018). Other stations, e.g. engineering sites, can easily be added manually and will be included in the processing from that day on.
There are three categories of VMF3o files:

VMF3o_EI: VMF3o parameters are based on raytraced delays using ECMWF ERAInterim NWM data. These files are available beginning with the year 1990 until end of August 2019.

VMF3o_FC: VMF3o parameters are based on raytraced delays using the ECMWF forecast NWM. These files are available one day prior to the day of their validity.

VMF3o_OP: VMF3o parameters are based on raytraced delays using the ECMWF operational NWM. These files are available one day after the day of their validity.
All eight parameters provided in the VMF3o files can be transformed to a wavelength between 350 and 1064 nm. The coefficients A, B, and C to evaluate Eqs. 14 and 15 are provided in CF_ABC.txt.
5 Conclusion
VMF3o is a new model for correcting troposphere delays in SLR. The model parameters are provided on the VMF Server on a daily basis. The model approach considers horizontal asymmetries of the atmosphere by introducing linear gradients. When comparing the modelled delays to raytraced delays, the application of gradients reduces the mean absolute error by more than 80%.
Furthermore, the zenith hydrostatic and the zenith wet delays are derived from raytracing. Thus, they contain additional vertical information from the NWM compared to only using surface values of meteorological parameters. This is of special interest for the wet component, where the vertical profile is hard to predict using ground measurements.
With this approach, VMF3o aims for a further advancement of the current accuracy level of SLR products. The effect of troposphere delay models derived from raytraced delays and including horizontal gradients on SLR products is already demonstrated by Drozdzewski et al. (2019). Furthermore, the processing scheme for VMF3o is analogue to the scheme for VMF3 (Landskron and Böhm 2017) and GRAD (Landskron and Böhm 2018), which are the followups of the wellestablished VMF1 (Böhm et al. 2006) model for microwave techniques. Using troposphere delay models from a single source could help to overcome intertechnique biases. So far, however, no investigations on that issue have been carried out.
Currently, a more detailed validation of VMF3o is ongoing to assess the effect of VMF3o on SLR products. This work is done in close cooperation with the ILRS Associate Analysis Center at Wroclaw University of Environmental and Life Sciences. The results are expected to be published in the near future.
Data Availability Statement
VMF3o time series can be downloaded from http://vmf.geo.tuwien.ac.at/trop_products/SLR/. Additional scripts and data for the calculation of the b and c coefficients as well as the correction formula can be found at http://vmf.geo.tuwien.ac.at/codes/. For more details on the usage, see http://vmf.geo.tuwien.ac.at/readme.txt.
References
Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for MediumRange Weather Forecasts operational analysis data. J Geophys Res 111:B02406. https://doi.org/10.1029/2005JB003629
Böhm J, Böhm S, Boisits J, Girdiuk A, Gruber J, Hellerschied A, Krásná H, Landskron D, Madzak M, Mayer D, McCallum J, McCallum L, Schartner M, Teke K (2018) Vienna VLBI and Satellite Software (VieVS) for geodesy and astrometry. Publ Astron Soc Pacific 130:044503. https://doi.org/10.1088/15383873/aaa22b
Boisits J, Landskron D, Sośnica K, Drozdzewski M, Böhm J (2018) VMF3o: Enhanced tropospheric mapping functions for optical frequencies. Presented at: 21st International Workshop on Laser Ranging, Canberra, Australia. https://cddis.nasa.gov/lw21/docs/2018/papers/ Session2_Boisits_paper.pdf
Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502. https://doi.org/10.1029/97JB01739
Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35:1566–1573. https://doi.org/10.1364/AO.35.001566
Drozdzewski M, Sośnica K (2018) Satellite laser ranging as a tool for the recovery of tropospheric gradients. Atmos Res 212:33–42. https://doi.org/10.1016/j.atmosres.2018.04.028
Drozdzewski M, Sośnica K, Zus F, Balidakis K (2019) Troposphere delay modeling with horizontal gradients for satellite laser ranging. J Geod. https://doi.org/10.1007/s00190019012871
Gardner CS (1977) Correction of laser tracking data for the effects of horizontal refractivity gradients. Appl Opt 16:2427–2432
Hauser JP (1989) Effects of deviations from hydrostatic equilibrium on atmospheric corrections to satellite and lunar laser range measurements. J Geophys Res 94:10182–10186
Herring T (1992) Modeling atmospheric delays in the analysis of space geodetic data. In: De Munck JC, Spoelstra TAT (eds) Proceedings of refraction of transatmospheric signals in geodesy, Netherlands Geodetic Commission Publications on Geodesy, The Hague, Netherlands, pp 157–164
Hobiger T, Ichikawa R, Koyama Y, Kondo T (2008) Fast and accurate raytracing algorithms for realtime space geodetic applications using numerical weather models. J Geophys Res 113:D20302. https://doi.org/10.1029/2008JD010503
Hofmeister A, Böhm J (2017) Application of raytraced tropospheric slant delays to geodetic VLBI analysis. J Geod 91:945–964. https://doi.org/10.1007/s0019001710007
Hulley GC, Pavlis EC (2007) A raytracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients. J Geophys Res 112:B06417. https://doi.org/10.1029/2006JB004834
Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40:1069–1073. https://doi.org/10.1002/grl.50288
Landskron D, Böhm J (2017) VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod 92:349–360. https://doi.org/10.1007/s0019001710662
Landskron D, Böhm J (2018) Refined discrete and empirical horizontal gradients in VLBI analysis. J Geod 92:1387–1399. https://doi.org/10.1007/s0019001811271
Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7:223–231. https://doi.org/10.1029/RS007i002p00223
Marini JW, Murray CW (1973) Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. NASATMX70555 p 60 p
Mendes VB, Pavlis EC (2004) Highaccuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. https://doi.org/10.1029/2004GL020308
Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29:531–534. https://doi.org/10.1029/2001GL014394
Mohanakumar K (2008) Stratosphere troposphere interactions. Springer, Berlin
Nilsson T, Böhm J, Wijaya DD, Tresch A, Nafisi V, Schuh H (2013) Path delays in the neutral atmosphere. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Vienna, Austria, pp 73–136
Noll C, Tyahla LJ (2012) Refraction Study Group (RSG) activities. https://ilrs.cddis.eosdis.nasa.gov/data_and_products/dfpwg/rsg/rsg_activities.html. Accessed 30 Nov 2019
Noll C, Tyahla LJ (2019) ILRS operational station identification table (site log). https://ilrs.cddis.eosdis.nasa.gov/network/stations/active/index.html. Accessed 27 Nov 2019
Noll CE, Ricklefs R, Horvath J, Müeller H, Schwatke C, Torrence M (2018) Information resources supporting scientific research for the international laser ranging service. J Geod 92:2211–2225. https://doi.org/10.1007/s0019001812072
Pearlman MR, Noll CE, Pavlis EC, Lemoine FG, Combrink L, Degnan JJ, Kirchner G, Schreiber U (2019a) The ILRS: approaching 20 years and planning for the future. J Geod 93:2161–2180. https://doi.org/10.1007/s00190019012411
Pearlman M, Arnold D, Davis M, Barlier F, Biancale R, Vasiliev V, Ciufolini I, Paolozzi A, Pavlis EC, Sośnica K, Bloßfeld M (2019b) Laser geodetic satellites: a highaccuracy scientific tool. J Geod 93:2181–2194. https://doi.org/10.1007/s0019001901228y
Petit G, Luzum B (2010) IERS conventions. In: Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main
Zus F, Dick G, Dousa J, Wickert J (2015) Systematic errors of mapping functions which are based on the VMF1 concept. GPS Solut 19:277–286. https://doi.org/10.1007/s1029101403864
Acknowledgements
Open access funding provided by Austrian Science Fund (FWF). The authors would like to thank the Austrian Science Fund (FWF) for supporting this work within the project RADIATE ORD (ORD 68).
Author information
Authors and Affiliations
Contributions
Janina Boisits and Johannes Böhm designed the research. The implementation of new software features and the determination of VMF3o time series was performed by Janina Boisits with support from Daniel Landskron. Janina Boisits performed the comparison study and the validation of the VMF3o model. Janina Boisits wrote the manuscript with support from Johannes Böhm and Daniel Landskron.
Corresponding author
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Boisits, J., Landskron, D. & Böhm, J. VMF3o: the Vienna Mapping Functions for optical frequencies. J Geod 94, 57 (2020). https://doi.org/10.1007/s00190020013855
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00190020013855