Skip to main content
Log in

Single-frequency GNSS cycle slip estimation with positional polynomial constraint

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Single-frequency GNSS RTK is a promising technology in the popularization application due to its relative low expense compared to multi-frequency RTK. Owing to the incapability of forming between-frequency combination and the relatively poor quality of single-frequency receivers, particularly for low-cost receivers, the cycle slip estimation in single frequency is a significant challenge. We propose a new efficient method for real-time single-frequency cycle slip estimation by imposing position-based polynomial constraint based on a fact that the motion of vehicle often obeys a low-order polynomial over a short period. The key is to precisely model the motion kinematics by means of a low-order polynomial fitting of several historical epochs. With the constraint of positional polynomial, the estimation of cycle slips can be significantly improved. To evaluate the feasibility and reliability of this method, a variety of cycle slip situations are tested by comparing with two traditional methods, i.e., the measurement-based polynomial fitting and the triple-differenced residual-based method. The results show that the new method can achieve better results than two traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Baarda W (1968) A testing procedure for use in geodetic networks. Publications on geodesy. Technical report, vol 2, no 5, Netherlands Geodetic Commission, Delft

  • Baselga S (2011) Nonexistence of rigorous tests for multiple outlier detection in least-squares adjustment. J Surv Eng 137(3):109–112

    Article  Google Scholar 

  • Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202

    Article  Google Scholar 

  • Carcanague S (2012) Real-time geometry-based cycle slip resolution technique for single-frequency PPP and RTK. In: Proceedings of the ION GNSS 2012, Nashville, Tennessee, USA, 17–21 Sept, 1136–1148

  • Chang X, Yang X, Zhou T (2005) MLAMBDA: a modified LAMBDA method for integer least-squares estimation. J Geod 79:552–565

    Article  Google Scholar 

  • Chen D, Ye S, Zhou W, Liu Y, Jiang P, Tang W, Yuan B, Zhao L (2016) A double-differenced cycle slip detection and repair method for GNSS CORS network. GPS Solut 20(3):439–450

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, 640, 114

  • Euler HJ, Schaffrin B (1991) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: IAG Symposia no. 107, kinematic systems in geodesy, surveying, and remote sensing. Springer, New York, pp 285–295

  • Freda P, Angrisano A, Gaglione S, Troisi S (2015) Time-differenced carrier phases technique for precise GNSS velocity estimation. GPS Solut 19(2):335–341

    Article  Google Scholar 

  • Han S (1997) Quality control issues relating to instantaneous ambiguity resolution for real time GPS kinematic positioning. J Geod 71:351–361

    Article  Google Scholar 

  • Hawkins DM (1980) Identification of outliers. Chapman & Hall, London

    Book  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer, Berlin

    Google Scholar 

  • Kamimura M, Tomita R, Nagano T, Chabata A, Kubo Y (2011) Detection of cycle slips and multipath in GNSS RTK precise point positioning. In: Proceedings of the ION GNSS 2011, pp 1056–1067

  • Kim Y, Song J, Kee C, Park B (2015) GPS cycle slip detection considering satellite geometry based on TDCP/INS integrated navigation. Sensors 15(10):25336–25365

    Article  Google Scholar 

  • Kirkko-Jaakkola M, Traugott J, Odijk D, Collin J, Sachs G, Holzapfel F (2009) A RIAM approach to GNSS outlier and cycle slip detection using L1 carrier phase time-differences. In: Proceedings of the 2009 IEEE workshop on signal processing systems (SiPS), Tampere Finland, pp 273–278

  • Koch K (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Lacy MCD, Reguzzoni M, Sansò F, Venuti G (2008) The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem. J Geod 82(9):527–542

    Article  Google Scholar 

  • Lacy MCD, Reguzzoni M, Sansò F (2012) Real-time cycle slip detection in triple-frequency GNSS. GPS Solut 16(3):353–362

    Article  Google Scholar 

  • Lee HK, Wang J, Park WY, Rizos C (2003) Carrier phase processing issues for high accuracy integrated GPS/Pseudolite/INS systems. In: Proceedings of the 11th IAIN world congress, Berlin, Germany, paper 252

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York

    Google Scholar 

  • Li B, Teunissen PJG (2014) GNSS antenna array-aided CORS ambiguity resolution. J Geod 88(4):363–376

    Article  Google Scholar 

  • Li P, Zhang X (2014) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solut 18(3):461–471

    Article  Google Scholar 

  • Li X, Zhang X, Ge M (2011) Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J Geod 85(3):151–158

    Article  Google Scholar 

  • Li B, Shen Y, Feng Y, Gao W, Yang L (2014) GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. J Geod 88:99–112

    Article  Google Scholar 

  • Li B, Qin Y, Li Z, Lou L (2016) Undifferenced cycle slip estimation of triple-frequency BeiDou signals with ionosphere prediction. Mar Geod 39(5):348–365

    Article  Google Scholar 

  • Li B, Zhang L, Verhagen S (2017) Impacts of BeiDou stochastic model on reliability: overall test, w-test and minimal detectable bias. GPS Solut 21:1095–1112

    Article  Google Scholar 

  • Li B, Qin Y, Liu T, Lou L (2019) Geometry-based cycle slip and data gap repair for multi-GNSS and multi-frequency observations. J Geod 93:399–417

    Article  Google Scholar 

  • Lin S, Yu FC (2013) Cycle slips detection algorithm for low cost single frequency GPS RTK positioning. Surv Rev 45(330):206–214

    Article  Google Scholar 

  • Lipp A, Gu X (1994) Cycle slip detection and repair in integrated navigation systems. In: Proceedings of the IEEE PLANS94, pp 681–688

  • Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85(3):171–183

    Article  Google Scholar 

  • Neyman J, Pearson ES (1933) On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 231:289–337

    Article  Google Scholar 

  • Realini E, Reguzzoni M (2013) goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning. Meas Sci Technol 24(11):115010

    Article  Google Scholar 

  • Takasu T, Yasuda A (2008) Cycle slip detection and fixing by MEMS-IMU/GPS integration for mobile environment RTK-GPS. In: Proceedings of the ION GNSS 2008, Institute of Navigation, Savannah, GA, USA, 16–19 Sept, pp 1619–6471

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen PJG (1998) Minimal detectable biases of GPS data. J Geod 72:236–244

    Article  Google Scholar 

  • Teunissen PJG (2002) Quality control in integrated navigation systems. IEEE Aerosp Electron Syst Mag 5(7):35–41

    Article  Google Scholar 

  • Teunissen PJG (2006) Testing theory: an introduction, 2nd edn. Delft University Press, Delft

    Google Scholar 

  • Teunissen PJG, Verhagen S (2007) On GNSS ambiguity acceptance tests. In: Proceedings of IGNSS symposium, Sydney, pp 1–13

  • Verhagen S, Li B (2012) LAMBDA software package: matlab implementation, version 3.0. Delft University of Technology and Curtin University, Perth

    Google Scholar 

  • Verhagen S, Teunissen PJG (2013) The ratio test for future GNSS ambiguity resolution. GPS Solut 17(4):535–548

    Article  Google Scholar 

  • Wei M, Schwarz KP (1995) Fast ambiguity resolution using an integer nonlinear programming method. ION GPS-1995, Palm Springs CA, 1101–1110

  • Xu G (2007) GPS: theory, algorithms and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  • Xu P, Shi C, Liu J (2012) Integer estimation methods for GPS ambiguity resolution: an applications oriented review and improvement. Surv Rev 44(324):59–71

    Article  Google Scholar 

  • Yang L, Wang J, Knight NL, Shen Y (2013) Outlier separability analysis with a multiple alternative hypotheses test. J Geod 87(6):591–604

    Article  Google Scholar 

  • Ye S, Liu Y, Song W, Lou Y, Yi W, Zhang R, Jiang P, Xiang Y (2016) A cycle slip fixing method with GPS + GLONASS observations in real-time kinematic PPP. GPS Solut 20(1):101–110

    Article  Google Scholar 

  • Zangeneh-Nejad F, Amiri-Simkooei AR, Sharifi MA, Asgari J (2017) Cycle slip detection and repair of undifferenced single-frequency GPS carrier phase observations. GPS Solut 21:1593–1603

    Article  Google Scholar 

  • Zhang X, Li P (2016) Benefits of the third frequency signal on cycle slip correction. GPS Solut 20(3):1–10

    Article  Google Scholar 

  • Zhang X, Guo F, Zhou P (2014) Improved precise point positioning in the presence of ionospheric scintillation. GPS Solut 18(1):51–60

    Article  Google Scholar 

  • Zhao Q, Sun B, Dai Z, Hu Z, Shi C, Liu J (2015) Real-time detection and repair of cycle slips in triple-frequency GNSS measurements. GPS Solut 19(3):381–391

    Article  Google Scholar 

  • Zhou Z, Li B (2015) GNSS windowing navigation with adaptively constructed dynamic model. GPS Solut 19(1):37–48

    Article  Google Scholar 

  • Zhou Z, Shen Y, Li B (2010) A windowing-recursive approach for GPS real-time kinematic positioning. GPS Solut 14(4):365–373

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by National Natural Science Foundation of China (41874030, 41622401 and 41574023), the National Key Research and Development Program of China (2016YFB0501802), the Technology Innovation Action Plan of Shanghai Science and Technology Committee (18511101801) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Liu, T., Nie, L. et al. Single-frequency GNSS cycle slip estimation with positional polynomial constraint. J Geod 93, 1781–1803 (2019). https://doi.org/10.1007/s00190-019-01281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01281-7

Keywords

Navigation