Skip to main content
Log in

The ratio test for future GNSS ambiguity resolution

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The performance of the popular ambiguity ratio test is analyzed. Based on experimental and simulated data, it is demonstrated that the current usage of the ratio test with fixed critical value is not sustainable in light of the enhanced variability that future global navigation satellite system (GNSS) ambiguity resolution will bring. As its replacement, the model-driven ratio test with fixed failure rate is proposed. The characteristics of this fixed-failure rate ratio test are described, and a performance analysis is given. The relation between its critical value and various GNSS model parameters is also studied. Finally, a procedure is presented for the creation of fixed failure rate look-up tables for the critical values of the ratio test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abidin HA (1993) Computational and geometrical aspects of on-the-fly ambiguity resolution. Dissertation, Department of Surveying Engineering, Technical Report No 104, University of New Brunswick, Canada

  • Chen Y (1997) An approach to validate the resolved ambiguities in GPS rapid positioning. In: Proceedings of the International symposium on kinematic systems in geodesy, geomatics and navigation, Banff, Canada, pp 301–304

  • Euler HJ, Schaffrin B (1990) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: IAG Symposia no.107, kinematic systems in geodesy, surveying, and remote sensing, Springer-Verlag, New York, pp 285–295

  • Frei E, Beutler G (1990) Rapid static positioning based on the fast ambiguity resolution approach FARA: theory and first results. Manuscripta Geodaetica 15(6):325–356

    Google Scholar 

  • Ha S (1997) Quality control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J Geodesy 71(6):351–361

    Article  Google Scholar 

  • Han S, Rizos C (1996a) Validation and rejection criteria for integer least-squares estimation. Survey Review 33(260):375–382

    Article  Google Scholar 

  • Han S, Rizos C (1996b) Integrated methods for instantaneous ambiguity resolution using new-generation GPS receivers. In: Proceedings of the IEEE PLANS’96, Atlanta GA, pp 245–261

  • Landau H, Euler HJ (1992) On-the-fly ambiguity resolution for precise differential positioning. In: Proceedings of the ION GPS-1992, Albuquerque NM, pp 607–613

  • Odijk D (2000) Weighting ionospheric corrections to improve fast GPS positioning over medium distances. In: Proceedings of the ION GPS-2000, Salt Lake City UT, pp 1113–1123

  • Odijk D, Teunissen PJG, Huisman L (2012) First results of mixed GPS + GIOVE single-frequency RTK in Australia. J Sp Sci 57:3–18

    Article  Google Scholar 

  • Parkins A (2011) Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solut 15:391–402

    Article  Google Scholar 

  • Tandy M, Young KW (2012) Variable duration fixed failure rate ambiguity resolution. GPS Solut. doi:10.1007/s10291-012-0265-9

    Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS ambiguity resolution. J Geodesy 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geodesy 73(11):587–593

    Article  Google Scholar 

  • Teunissen PJG (2003) Integer aperture GNSS ambiguity resolution. Artif Satell 38(3):79–88

    Google Scholar 

  • Teunissen PJG (2004) GNSS ambiguity resolution. J Geodesy 78:235–244

    Article  Google Scholar 

  • Teunissen PJG (2005) Penalized GNSS ambiguity resolution with optimally controlled failure-rate. Artif Satell 40(4):219–227

    Google Scholar 

  • Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Survey Rev 41(312):138–151

    Article  Google Scholar 

  • Tiberius CCJM, De Jonge PJ (1995) Fast positioning using the LAMBDA method. In: Proceedings of the DSNS’95, Bergen, Norway

  • Verhagen S (2002) Studying the performance of global navigation satellite systems: a new software tool. GPS World 13(6):60–65

    Google Scholar 

  • Verhagen S (2004) Integer ambiguity validation: an open problem? GPS Solut 8(1):36–43

    Article  Google Scholar 

  • Verhagen S (2005a) The GNSS integer ambiguities: estimation and validation. Dissertation, Publications on Geodesy, 58, Netherlands Geodetic Commission, Delft

  • Verhagen S (2005b) On the reliability of integer ambiguity resolution. Navigation 52(2):99–110

    Google Scholar 

  • Verhagen S, Teunissen PJG (2006) New global navigation satellite system ambiguity resolution method compared to existing approaches. J Guid Cont Dyn 29(4):981–991

    Article  Google Scholar 

  • Wang J, Stewart MP, Tsakiri M (1998) A discrimination test procedure for ambiguity resolution on-the-fly. J Geodesy 72(11):644–653

    Article  Google Scholar 

  • Wei M, Schwarz KP (1995) Fast ambiguity resolution using an integer nonlinear programming method. In: Proceedings of the ION GPS-1995, Palm Springs CA, pp 1101–1110

Download references

Acknowledgments

Peter Teunissen is Federation Fellow of the Australian Research Council (project FF0883188). The research of Sandra Verhagen is supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs. Part of this work was done in the framework of the project ‘New Carrier Phase Processing Strategies for Next Generation GNSS Positioning’ of the Cooperative Research Centre for Spatial Information (CRC-SI2). All this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Verhagen.

Appendix

Appendix

Here, we will work with the reciprocal of the ratio test, which means that \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a} \) is accepted if \( \frac{{q({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a} }})}}{{q({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a}^{\prime}}})}} \le \frac{1}{c} = \mu \), since the threshold value \( \mu \) is then limited as \( 0 \le \mu \le 1 \).

Procedure for determining the threshold value \( \mu \) based on simulations

  1. 1.

    For a given model, calculate P f,ILS , for example, use the upper bound from integer bootstrapping (Teunissen 1999). If P f,ILS \( \le \) P f , set \( \mu = 1 \), otherwise continue with step 2.

  2. 2.

    Using Monte Carlo simulations, generate N samples of normally distributed float ambiguities: \( {\hat{\mathbf{a}}}_{{\mathbf{i}}} \sim N(0,{\mathbf{Q}}_{{{\mathbf{\hat{a}\hat{a}}}}} ),{\mkern 1mu} \begin{array}{*{20}c} {} & {i = 1, \ldots ,N} \\ \end{array} \).

  3. 3.

    Determine the ILS solutions (best and second-best candidates) \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a} }}_{{\mathbf{i}}} {\mathbf{, \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a}^{\prime}}}_{i} , \, R_{i} = \frac{{q({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a} }}_{{\mathbf{i}}} )}}{{q({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a}^{\prime}}}_{i} )}} \).

  4. 4.

    The simulation-based failure rate as function of \( \mu \) is given by \( {\mathbf{P}}_{{\mathbf{f}}} (\mu ) = \frac{{N_{f} }}{N} \) with \( N_{f} = \mathop {\mathop \sum \limits^{N} }\limits_{i = 1} \omega (R_{i} ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a} }}_{{\mathbf{i}}} ) \) where \( \omega (R_{i} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a}_{i} ) \) equals 1 if \( R_{i} \le \mu \;,\;{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{a} }}_{{\mathbf{i}}} \ne 0 \), and 0 otherwise.

Choose \( \mu_{\hbox{min} } = (\hbox{min} (R_{i} ) - 10^{ - 16} ) \) since this results in \( N_{f} = 0{\mkern 1mu} \Rightarrow {\mkern 1mu} {\mathbf{P}}_{{\mathbf{f}}} (\mu_{\hbox{min} } ) = 0 \), \( \mu_{\hbox{max} } = \hbox{max} (R_{i} ) \) which results in \( {\mathbf{P}}_{{\mathbf{f}}} (\mu_{\hbox{max} } ) = {\mathbf{P}}_{{{\mathbf{f,ILS}}}} \).

  1. 5.

    Use a root finding method to find \( \mu \in [\mu_{\hbox{min} } ,\mu_{\hbox{max} } ]{\text{ so that }}{\mathbf{P}}_{{\mathbf{f}}} (\mu ) - {\mathbf{P}}_{{\mathbf{f}}} = 0 \).

This will give the solution since \( {\mathbf{P}}_{{\mathbf{f}}} (\mu_{\hbox{min} } ) - {\mathbf{P}}_{{\mathbf{f}}} < 0 \) and \( {\mathbf{P}}_{{\mathbf{f}}} (\mu_{\hbox{max} } ) - {\mathbf{P}}_{{\mathbf{f}}} > 0, \)

and the failure rate is monotonically increasing for increasing \( \mu \).

Procedure for creating the look-up table

  1. 1.

    Generate many different models based on varying satellite geometry (system, time and location), number of frequencies, number of epochs, measurement noise, baseline length and the availability and accuracy of atmosphere corrections.

  2. 2.

    For each model, use the simulation approach described above to find the threshold value for the given fixed failure rate P f.

  3. 3.

    Select all models with the same number of ambiguities n.

  4. 4.

    Plot the ILS failure rate P f,ILS versus the threshold value \( \mu \) determined with the simulations for all models with the same n (See example in Fig. 9. Note that here \( c = 1/\mu \) is shown).

  5. 5.

    In order to be conservative, one can manually select the points creating the blue solid line as in Fig. 9, which ensures that with the corresponding threshold value for a given ILS failure rate, this value \( \mu = 1/c \) is somewhat lower than required, that is, more conservative.

  6. 6.

    The solid blue line can then be used to determine the appropriate threshold values \( \mu \) for the ILS failure rates in the table, and these can be stored in the column corresponding to dimension n.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhagen, S., Teunissen, P.J.G. The ratio test for future GNSS ambiguity resolution. GPS Solut 17, 535–548 (2013). https://doi.org/10.1007/s10291-012-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-012-0299-z

Keywords

Navigation