Skip to main content
Log in

Comparison of individual and combined zenith tropospheric delay estimations during CONT08 campaign

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

CONT campaigns are 2-week campaigns of continuous VLBI observations. The IERS working group on combination at the observation level uses these campaigns to study such combinations. In this work, combinations of DORIS, GPS, SLR, and VLBI technique measurements are studied during CONT08. We present different results concerning the use of common zenith tropospheric delay (ZTD) during the combination. We compare the ZTD obtained separately using each individual technique data processing, the combined ZTD, and the ZTD derived from a meteorological model. This resulted in a high level of consistency between each of these ZTD at a sub-centimeter level, a consistency which especially depends on the number of observations per estimated ZTD and the humidity level in the troposphere. We noted that GPS provides the main information about the combined ZTD, the other techniques providing complementary information when a lack of GPS observations occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Centre National d’Etudes Spatiales/Groupe de Recherche de Géodésie Spatiale.

  2. One million of GPS observations per week with 10-min sampling, 10 millions with 1-min sampling.

  3. Less than 6 h to process 1 day of GPS data with a 10-min sampling instead of more than 18 h with a 1-min sampling with our server, without taking into account the processing time of the combinations.

  4. Since VLBI observations are interferometric observations involving two stations, 11,000 observations actually correspond to about 5,500 signal receptions per site.

  5. This confidence level corresponds to \(|\frac{\mathrm{Mean}}{\mathrm{SEM}}|>1.96\) with SEM the standard error of the mean, Altman and Bland (2005).

  6. Software developed by the Jet Propulsion Laboratory (JPL).

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2012) Analysis and results of ITRF2008. IERS Technical Note 37, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt-am-Main

  • Altman DG, Bland JM (2005) Standard deviations and standard errors. Br Med J 331(7521, article 903). doi:10.1136/bmj.331.7521.903

  • Bähr H, Altamimi Z, Heck B (2007) Variance component estimation for combination of terrestrial reference frames. Master’s thesis, Universität Kahrlsruhe. http://uvka.ubka.uni-karlsruhe.de/shop/download/1000007363

  • Behrend D, Haas R, Pino D, Gradinarsky LP, Keihm SJ, Schwarz W, Cucurull L, Rius A (2002) MM5 derived ZWDs compared to observational results from VLBI, GPS and WVR. Phys Chem Earth 27(4–5):301–308. doi:10.1016/S1474-7065(02)00004-9

    Article  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386

    Google Scholar 

  • Bizouard C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008. IERS notice 2011. ftp://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

  • Bock O, Bouin MN, Doerflinger E, Collard P, Masson F, Meynadier R, Nahmani S, Koité M, Balawan KGL, Didé F, Ouedraogo D, Wilson G, Guichard F, Janicot S, Lafore JP, Nuret M (2008) The West African Monsoon observed by ground-based GPS receivers during the AMMA project. J Geophys Res 113(D21105). doi:10.1029/2008JD010327

  • Bock O, Willis P, Lacarra M, Bosser P (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv Space Res 46:1648–1660. doi:10.1016/j.asr.2010.05.018

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07,304. doi:10.1029/2005GL025546

  • Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111(B02406). doi:10.1029/2005JB003629

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Bourda G, Charlot P, Biancale R (2007) GINS: a new tool for VLBI geodesy and astrometry. In: The 18th European VLBI for geodesy and astrometry (EVGA) working meeting, vol 79, pp 59–63

  • Heinkelmann R, Böhm J, Bolotin S, Engelhardt G, Haas R, Lanotte R, MacMillan D, Negusini M, Skurikhina E, Titov O, Schuh H (2011) VLBI-derived troposphere parameters during CONT08. J Geod 85(7):377–393. doi:10.1007/s00190-011-0459-x

    Article  Google Scholar 

  • Heirtzler JR, Allen JH, Daniel CW (2002) Ever-present South Atlantic Anomaly damages spacecraft. Eos Trans Am Geophys Union 83(15):165–169. doi:10.1029/2002EO000105

    Article  Google Scholar 

  • Krügel M, Thaller D, Tesmer V, Rothacher M, Angermann D, Schmid R (2007) Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geod 81:515–527. doi:10.1007/s00190-006-0127-8

    Article  Google Scholar 

  • Lemoine JM, Capdeville H (2006) A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. J Geod 80:507–523. doi:10.1007/s00190-006-0068-2

    Article  Google Scholar 

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty J-C (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS Analysis Center. J Geod 86:991–1003. doi:10.1007/s00190-012-0559-2

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Let 31(L14):602. doi:10.1029/2004GL020308

    Google Scholar 

  • Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Let 29(10):1414. doi:10.1029/2001GL014394

    Article  Google Scholar 

  • Meynadier R (2010) Analyse multi-échelle du cycle de l’eau dans la mousson africaine à l’aide d’observations GPS. PhD thesis, Université Pierre et Marie Curie-Paris VI

  • Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Tech 18(6):830850. doi:10.1175/1520-0426(2001)018\(\langle \)0830:COMOAW\(\rangle \)2.0.CO;2

  • Ning T, Haas R, Elgered G, Willèn U (2012) Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden. J Geod 86(7):565–575. doi:10.1007/s00190-011-0527-2

    Article  Google Scholar 

  • Petit G, Luzum B, (2010) IERS Conventions 2010. IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt-am-Main

  • Plag HP, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin

    Google Scholar 

  • Pollet A (2011) Combinaison de techniques de géodésie spatiale. Contributions aux réalisations des systèmes de référence et à la détermination de la rotation de la Terre. PhD thesis, Observatoire de Paris

  • Pollet A, Coulot D, Capitaine N (2012) Towards a combination of space-geodetic measurements. In: Rizos C, Willis P (eds) Proceedings “geodesy for planet earth”. IAG Symposia, vol 136. Springer, Berlin, pp 51–57. doi:10.1007/978-3-642-20338-1

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Sillard P (1999) Modélisation des systèmes de référence terrestres. Contribution théorique et méthodologique. PhD thesis, Observatoire de Paris

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2–3):63–73. doi:10.1007/s001900100166

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter No. 110. http://www.ecmwf.int/publications/newsletters/pdf/110.pdf

  • Steigenberger P, Tesmer V, Krügel M, Thaller D, Schmid R, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81(6–8):503514. doi:10.1007/s00190-006-0124-y

    Google Scholar 

  • Stepanek P, Dousa J, Filler V (2013) SPOT-5 DORIS oscillator instability due to South Atlantic Anomaly: mapping the effect and application of data corrective model. Adv Space Res 52(7):1355–1365. doi:10.1016/j.asr.2013.07.010

    Article  Google Scholar 

  • Teke K, Nilsson T, Böhm J, Hobiger T, Steigenberger P, García-Espada S, Haas R, Willis P (2013) Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J Geod 87:981–1001. doi:10.1007/s00190-013-0662-z

  • Teunissen PJG, Amiri-Simkooei AR (2007) Least-squares variance component estimation. J Geod 82:65–82. doi:10.1007/s00190-007-0157-x

  • Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Let 33(L23):303. doi:10.1029/2006GL027706

  • Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The international DORIS service (ids): toward maturity. Adv Space Res 45(12):1408–1420. doi:10.1016/j.asr.2009.11.018

Download references

Acknowledgments

We are grateful to Richard Biancale and Jean-Charles Marty (CNES/GET) who provided us with the GINS-PC software and to Sylvain Loyer (CLS), Felix Perosanz (CNES/GET), Laurent Soudarin (CLS), Florent Deleflie (IMCCE), Frank Reinquin (CNES/GET), Geraldine Bourda, and Antoine Bellanger (Bordeaux Observatory) for their help with the GPS (resp. DORIS, SLR, and VLBI) processing. We also acknowledge the members of the IERS working group COL for fruitful discussions and CNES for financialsupport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pollet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pollet, A., Coulot, D., Bock, O. et al. Comparison of individual and combined zenith tropospheric delay estimations during CONT08 campaign. J Geod 88, 1095–1112 (2014). https://doi.org/10.1007/s00190-014-0745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0745-5

Keywords

Navigation