Skip to main content
Log in

VLBI-derived troposphere parameters during CONT08

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12–26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10): 2214. doi:10.1029/2001JB000561

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B09401). doi:10.1029/2007JB004949

  • Angermann D, Drewes H, Kruegel M, Meisel B, Gerstl M, Kelm R, Mueller H, Seemueller W, Tesmer V (2004) ITRS Combination Center at DGFI: a Terrestrial Reference Frame Realization 2003. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, Reihe B (313), München

  • Berg H (1948) Allgemeine Meteorologie. Dümmler, Bonn

    Google Scholar 

  • Bierman GJ (1977) Factorization methods for discrete sequential estimation. In: Bellman R (ed) Mathematics in Science and Engineering, vol 128, University of Southern California

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84: 201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Böhm J, Messerer E, Schuh H (2002) Comparison of tropospheric parameters submitted to the IVS Analysis Pilot Project. In: Vandenberg NR, Baver KD (eds) IVS 2002 General Meeting Proceedings. NASA/CP-2002-210002, pp 340–344

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. J Geophys Res 111(B02406). doi:10.1029/2005JB003629

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683

    Article  Google Scholar 

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502

    Article  Google Scholar 

  • Davis J, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on the estimates of baseline lengths. Rad Sci 20: 1593–1607

    Article  Google Scholar 

  • Elgered G (2001) An overview of COST Action 716: exploitation of ground-based GPS for climate and numerical weather prediction applications. Phys Chem Earth 26(6–8): 399–404

    Google Scholar 

  • Fang X (2007) Statistische Analyse von Ausgleichungsergebnissen auf der Basis teilweise identischer Messwerte. Diplomarbeit im Studiengang Geodäsie und Geoinformatik, Geodätisches Institut, Leibniz Universität Hannover

  • Förstner W (1979) Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allg Vermess-Nachr (11–12):446–453

  • Gelb, A (ed.) (1974) Applied optimal estimation, Sixth printing. The M.I.T. Press, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Heinkelmann R (2008) Bestimmung des atmosphärischen Wasserdampfes mittels VLBI als Beitrag zur Klimaforschung. Geowissenschaftliche Mitteilungen No. 82. ISSN 1811-8380

  • Heinkelmann R (2009) IVSTrop: status and recommendations of the IVS rapid troposphere combination. In: Bourda G, Charlot P, and Collioud A (eds) Proceedings of the 19th EVGA Working Meeting. Université Bordeaux 1—CNRS, Observatoire Aquitain des Sciences de l’Univers, Laboratoire d’Astrophysique de Bordeaux, pp 180–182

  • Heinkelmann R, Böhm J, Schuh H (2005) Homogenization of surface pressure recordings and its impact on long-term series of VLBI tropospheric parameters. In: Vennebusch M, Nothnagel A (eds) Proceedings of the 17th EVGA Working Meeting. INAF—Istituto di Radioastronomia—Sezione di NOTO—Italy, pp 74–78

  • Heinkelmann R, Böhm J, Schuh H, Bolotin S, Engelhardt G, MacMillan DS, Negusini M, Skurikhina E, Tesmer V, Titov O (2007) Combination of long time-series of troposphere zenith delays observed by VLBI. J Geod 81(6–8): 483–501

    Article  Google Scholar 

  • Heinkelmann R, Böhm J, Schuh H, Tesmer V (2009) The influence of meteorological input data on the VLBI reference frames. In: Drewes H (ed.) Geodetic Reference Frames, International Association of Geodesy Symposium 134. Springer, Berlin, pp 245–251

    Google Scholar 

  • IERS: (2004) IERS Conventions (2003). In: McCarthy DD, Petit G (eds) IERS Technical Note No 32. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Jin S, Wu Y, Heinkelmann R, Park J (2008) Diurnal and semidiurnal atmospheric tides observed by co-located GPS and VLBI measurements. J Atmos Solar-Terr Phys 70(2008): 1366–1372

    Article  Google Scholar 

  • Koch KR (1997) Parameterschätzung und Hypothesentests, 3rd edition. Dümmler, Bonn

    Google Scholar 

  • Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76: 641–652

    Article  Google Scholar 

  • Kutterer H (2004) Reliability measures for geodetic VLBI products. In: Vandenberg NR, Baver KD (eds) IVS 2004 General Meeting Proceedings, NASA/CP–2004–212255, pp 301–305

  • Kutterer H, Heinkelmann R, Tesmer V (2003) Robust outlier detection in VLBI data analysis. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th EVGA Working Meeting. Verlag des Bundesamts für Kartographie und Geodäsie, Leipzig Frankfurt am Main, pp 247–256

  • Kutterer H, Krügel M, Tesmer V (2009) Towards an improved assessment of the quality of terrestrial reference frames geodetic reference frames.. In: Drewes H (eds) International Association of Geodesy Symposia, vol 134. Springer, Berlin, pp 67–72. doi:10.1007/978-3-642-00860-3_10

    Google Scholar 

  • MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Let 22(9): 1041– 1044

    Article  Google Scholar 

  • MacMillan DS, Ma C (1998) Using meteorological data assimilation models in computing tropospheric delays at microwave frequencies. Phys Chem Earth 23(1): 97–102

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101(B2): 3227–3246

    Article  Google Scholar 

  • Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2002 General Meeting Proceedings, NASA/CP–2002–210002, pp 260–264

  • Plank L, Böhm J, Schuh H (2010) Comparison Campaign of VLBI data analysis software—first results. In: Behrend D, Baver KD (eds) IVS 2010 General Meeting Proceedings (in press)

  • Schuh H, Böhm J (2003) IVS Pilot Project—tropospheric parameters. Österreichische Zeitschrift für Vermessung und Geoinformation VGI(91) 01: 14–20

    Google Scholar 

  • Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6-8): 379–387

    Article  Google Scholar 

  • Steinforth C, Nothnagel A (2004) Considering a priori correlations in the IVS combined EOP series. In: Vandenberg NR, Baver KD (eds) IVS 2004 General Meeting Proceedings, NASA/CP–2004–212255, pp 413–417

  • Teke K, Böhm J, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinkelmann R, Willis P, Haas R, Garcia Espada S, Hobiger T, Ichikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod. doi:10.1007/s00190-010-0434-y

  • Tesmer V (2004) Das stochastische Modell bei der VLBI-Auswertung. DGK Reihe C, Dissertationen, Heft Nr. 573, ISBN 3 7696 5012 3, Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, München, p 105

  • Titov O, Schuh H (2000) Short periods in Earth rotation seen in VLBI data analysed by the least-squares collocation method. IERS Technical Note No. 28, Observatoire de Paris, Paris, pp 33–41

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Heinkelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinkelmann, R., Böhm, J., Bolotin, S. et al. VLBI-derived troposphere parameters during CONT08. J Geod 85, 377–393 (2011). https://doi.org/10.1007/s00190-011-0459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0459-x

Keywords

Navigation