Skip to main content
Log in

Estimation of phase center corrections for GLONASS-M satellite antennas

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Driven by the comprehensive modernization of the GLONASS space segment and the increased global availability of GLONASS-capable ground stations, an updated set of satellite-specific antenna phase center corrections for the current GLONASS-M constellation is determined by processing 84 weeks of dual-frequency data collected between January 2008 and August 2009 by a worldwide network of 227 GPS-only and 115 combined GPS/GLONASS tracking stations. The analysis is performed according to a rigorous combined multi-system processing scheme providing full consistency between the GPS and the GLONASS system. The solution is aligned to a realization of the International Terrestrial Reference Frame 2005. The estimated antenna parameters are compared with the model values currently used within the International GNSS Service (IGS). It is shown that the z-offset estimates are on average 7 cm smaller than the corresponding IGS model values and that the block-specific mean value perfectly agrees with the nominal GLONASS-M z-offset provided by the satellite manufacturer. The existence of azimuth-dependent phase center variations is investigated and uncertainties in the horizontal offset estimates due to mathematical correlations and yaw-attitude modeling problems during eclipse seasons are addressed. Finally, it is demonstrated that the orbit quality benefits from the updated GLONASS-M antenna phase center model and that a consistent set of satellite antenna z-offsets for GPS and GLONASS is imperative to obtain consistent GPS- and GLONASS-derived station heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z (2003) Discussion on how to express a regional GPS solution in the ITRF. In: Torres JA, Hornik H (eds) Proceedings of the EUREF Symposium 2002, EUREF Publication 12, Mitteilungen des Bundesamtes für Kartographie und Geodäsie 29: 162–167

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10). doi:10.1029/2001JB000561

  • Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11): 714–723. doi:10.1007/BF00867149

    Article  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS Service for Geodynamics (IGS): theory and initial results. Manuscr Geod 19(6): 367–386

    Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7). doi:10.1029/2005GL025546

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4): 353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Dilssner F, Seeber G, Wübbena G, Schmitz M (2008) Impact of near-field effects on the GNSS position solution. In: Proc ION GNSS 2008, Savannah, GA, pp 612–624

  • Dilssner F, Dach R, Schmid R (2009) z-Offset update for R23/R714 planned at the beginning of GPS week 1542. IGSMAIL-5970, IGS Central Bureau, Pasadena

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Ferland R (2003) IGS00 (v2) final. IGSMAIL-4666, IGS Central Bureau, Pasadena

    Google Scholar 

  • Ferland R (2006) Proposed IGS05 realization. IGSMAIL-5447, IGS Central Bureau, Pasadena

    Google Scholar 

  • Gendt G (2006) IGS switch to absolute antenna model and ITRF2005. IGSMAIL-5438 IGS Central Bureau, Pasadena

    Google Scholar 

  • Görres B, Campbell J, Becker M, Siemes M (2006) Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Solut 10(2): 136–145. doi:10.1007/s10291-005-0015-3

    Article  Google Scholar 

  • Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One- centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27(1-2): 299–318. doi:10.1080/01490410490465300

    Article  Google Scholar 

  • Heiskanen W, Moritz H (1996) Physical Geodesy, reprinted. Technical University Graz, Institute of Physical Geodesy, Austria

    Google Scholar 

  • ICD (2008) GLONASS Interface Control Document, Version 5.1. Russian Institute of Space Device Engineering, Moscow. Available at http://rniikp.ru/en/pages/about/publ/ikd51en.pdf

  • Johnson NL (1994) GLONASS spacecraft. GPS World 5(11): 51–58

    Google Scholar 

  • Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1): 1–12. doi:10.1007/s10291-008-0092-1

    Article  Google Scholar 

  • Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Solut 3(1): 50–58. doi:10.1007/PL00012780

    Article  Google Scholar 

  • Menge F, Seeber G, Völksen C, Wübbena G, Schmitz M (1998) Results of absolute field calibration of GPS antenna PCV. In: Proceedings of ION GPS-98, Nashville, TN, pp 31–38

  • Mitrikas V (2005) GLONASS-M dimensions and center-of-mass correction. IGSMAIL-5104, IGS Central Bureau, Pasadena

    Google Scholar 

  • Revnivykh S, Mitrikas V (1998) GLONASS S/C mass and dimension. IGEXMAIL-0086, IGS Central Bureau, Pasadena

    Google Scholar 

  • Rothacher M, Schmid R (2006) ANTEX: The antenna exchange format version 1.3. Format specifications, IGS Central Bureau, Pasadena. Available at ftp://igs.org/igscb/station/general/antex13.txt

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107(1): 13–34. doi:10.1007/BF02522083

    Article  Google Scholar 

  • Schaer S (2005) GLONASS MW antenna offset values. IGSMAIL-5151 IGS Central Bureau, Pasadena

    Google Scholar 

  • Schmid R (2006) igs05_1390.atx—new release of the absolute IGS antenna correction file. IGSMAIL-5400, IGS Central Bureau, Pasadena

    Google Scholar 

  • Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8): 440–446. doi:10.1007/s00190-003-0339-0

    Article  Google Scholar 

  • Schmid R, Mader G, Herring T (2005a) From relative to absolute antenna phase center corrections. In: Meindl M (ed) Proceedings of the IGS 2004 Workshop, Bern, pp 209–219

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas. GPS Solut 9(4): 283–293. doi:10.1007/s10291-005-0134-x

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Schupler BR, Clark TA (2001) Characterizing the behavior of geodetic GPS antennas. GPS World 12(2): 48–55

    Google Scholar 

  • Springer TA, Beutler G, Rothacher M (1999) Improving the orbit estimates of GPS satellites. J Geod 73(3): 147–157. doi:10.1007/s001900050230

    Article  Google Scholar 

  • Steigenberger P, Romero I, Fang P (2008) Reprocessing issues, standardization, new models. In: Springer T, Gendt G, Dow J (eds) Proceedings of the IGS 2006 Workshop, Darmstadt

  • Takac F (2009) GLONASS inter-frequency biases and ambiguity resolution. Inside GNSS 4(2): 24–28

    Google Scholar 

  • Weber R, Springer TA (2001) The international GLONASS experiment: products, progress and prospects. J Geod 75(11): 559–568. doi:10.1007/s001900100199

    Article  Google Scholar 

  • Willis P, Beutler G, Gurtner W, Hein G, Neilan RE, Noll C, Slater J (1999) IGEX: International GLONASS Experiment—scientific objectives and preparation. Adv Space Res 23(4): 659–663. doi:10.1016/S0273-1177(99)00147-7

    Article  Google Scholar 

  • Wübbena G, Schmitz M, Menge F, Böder V, Seeber G (2000) Automated absolute field calibration of GPS antennas in real-time. In: Proc ION GPS 2000, Salt Lake City, UT, pp 2512–2522

  • Wübbena G, Schmitz M, Boettcher G, Schumann C (2006) Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. In: Springer T, Gendt G, Dow J (eds) Proceedings of the IGS 2006 Workshop, Darmstadt

  • Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12): 668–672. doi:10.1007/s00190-002-0294-1

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Dilssner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilssner, F., Springer, T., Flohrer, C. et al. Estimation of phase center corrections for GLONASS-M satellite antennas. J Geod 84, 467–480 (2010). https://doi.org/10.1007/s00190-010-0381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0381-7

Keywords

Navigation