Skip to main content
Log in

The local linear functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The main purpose of the present paper is to investigate the problem of the nonparametric estimation of the expectile regression in which the response variable is scalar while the covariate is a random function. More precisely, an estimator is constructed by using the local linear k Nearest Neighbor procedures (kNN). The main contribution of this study is the establishment of the Uniform consistency in Number of Neighbors of the constructed estimators. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The usefulness of our result for the smoothing parameter automatic selection is discussed. Some simulation studies are carried out to show the finite sample performances of the kNN estimator. The theoretical uniform consistency results, established in this paper, are (or will be) key tools for many further developments in functional data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A semi-metric (sometimes called pseudo-metric) \(d(\cdot , \cdot )\) is a metric which allows \(d(x_{1}, x_{2}) = 0\) for some \(x_{1}\ne x_{2}\).

  2. A class of functions \({{{\mathcal {C}}}}\) is said to be a pointwise measurable class if, there exists a countable subclass \( {{{\mathcal {C}}}}_0 \) such that for any function \( g\in {{{\mathcal {C}}}}\) there exists a sequence of functions \((g_m)_{m\in \mathbb {N}}\) in \( {{{\mathcal {C}}}}_0\) such that:

    $$\begin{aligned} |g_m(z)-g(z)|=o(1). \end{aligned}$$

    This condition is discussed in (van der Vaart and Wellner 1996, Example 2.3.4. p 110) and (Kosorok 2008, §8.2. p. 110).

  3. An envelope function \(G(\cdot )\) for a class of functions \({{{\mathcal {C}}}}\) is any measurable function such that, for all z,

    $$\begin{aligned} \sup _{g\in {{{\mathcal {C}}}}}|g(z)|\le G(z). \end{aligned}$$
  4. Let \(\left( z_{n}\right) \) for \(n \in {\mathbb {N}}\), be a sequence of real r.v.’s. We say that \(\left( z_{n}\right) \) converges almost-completely (a.co.) toward zero if, and only if, for all

    $$\begin{aligned} \epsilon>0, \sum _{n=1}^{\infty } {\mathbb {P}}\left( \left| z_{n}\right| >\epsilon \right) <\infty . \end{aligned}$$

    Moreover, we say that the rate of the almost-complete convergence of \(\left( z_{n}\right) \) toward zero is of order \(u_{n}\) (with \(u_{n} \rightarrow 0\) ) and we write \(z_{n}=O_{a. c o.}\left( u_{n}\right) \) if, and only if, there exists \(\epsilon >0\) such that

    $$\begin{aligned} \sum _{n=1}^{\infty } {\mathbb {P}}\left( \left| z_{n}\right| >\epsilon u_{n}\right) <\infty . \end{aligned}$$

References

  • Abdous B, Rémillard B (1995) Relating quantiles and expectiles under weighted-symmetry. Ann Inst Stat Math 47(2):371–384

    Article  MathSciNet  Google Scholar 

  • Aigner DJ, Amemiya T, Poirier DJ (1976) On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function. Int Econ Rev 17(2):377–396

    Article  MathSciNet  Google Scholar 

  • Al-Awadhi FA, Kaid Z, Laksaci A, Ouassou I, Rachdi M (2019) Functional data analysis: local linear estimation of the \(L_1\)-conditional quantiles. Stat Methods Appl 28(2):217–240

    Article  MathSciNet  Google Scholar 

  • Almanjahie IM, Bouzebda S, Chikr Elmezouar Z, Laksaci A (2022) The functional \(k{\rm NN}\) estimator of the conditional expectile: uniform consistency in number of neighbors. Stat Risk Model 38(3–4):47–63

    MathSciNet  Google Scholar 

  • Almanjahie IM, Bouzebda S, Kaid Z, Laksaci A (2022) Nonparametric estimation of expectile regression in functional dependent data. J Nonparametr Stat 34(1):250–281

    Article  MathSciNet  Google Scholar 

  • Aneiros G, Cao R, Fraiman R, Vieu P (2019) Editorial for the special issue on functional data analysis and related topics. J Multivariate Anal 170:1–2

    Article  MathSciNet  Google Scholar 

  • Azzedine N, Laksaci A, Ould-Saïd E (2008) On robust nonparametric regression estimation for a functional regressor. Stat Probab Lett 78(18):3216–3221

    Article  MathSciNet  Google Scholar 

  • Barrientos-Marin J, Ferraty F, Vieu P (2010) Locally modelled regression and functional data. J Nonparametr Stat 22(5–6):617–632

    Article  MathSciNet  Google Scholar 

  • Bellini F, Klar B, Müller A, Rosazza Gianin E (2014) Generalized quantiles as risk measures. Insurance Math Econ 54:41–48

    Article  MathSciNet  Google Scholar 

  • Bellini F, Negri I, Pyatkova M (2019) Backtesting VaR and expectiles with realized scores. Stat Methods Appl 28(1):119–142

    Article  MathSciNet  Google Scholar 

  • Bosq D (2000) Linear processes in function spaces: theory and applications, vol 149. Lecture Notes in Statistics. Springer, New York

  • Bouzebda S (2023) General tests of conditional independence based on empirical processes indexed by functions. Jpn J Stat Data Sci 6(1):115–177

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2023) On the weak convergence and the uniform-in-bandwidth consistency of the general conditional \(U\)-processes based on the copula representation: multivariate setting. Hacet J Math Stat 52(3):1303–1348

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nezzal A (2022) Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional \(U\)-statistics involving functional data. In: Stat J (ed) Jpn. Data, Sci. To appear, 5 (2022), no 2, pp 431–533

  • Bouzebda S, Soukarieh I (2023) Non-parametric conditional u-processes for locally stationary functional random fields under stochastic sampling design. Mathematics, 11(1)

  • Bouzebda S, Laksaci A, Mohammedi M (2023) The \(k\)-nearest neighbors method in single index regression model for functional quasi-associated time series data. Rev Mat Complut 36(2):361–391

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nezzal A, Zari T (2023) Uniform consistency for functional conditional U-statistics using delta-sequences. Mathematics 11(1):1–39

    Google Scholar 

  • Breckling J, Chambers R (1988) \(M\)-quantiles. Biometrika 75(4):761–771

    Article  MathSciNet  Google Scholar 

  • Burba F, Ferraty F, Vieu P (2009) \(k\)-nearest neighbour method in functional nonparametric regression. J Nonparametr Stat 21(4):453–469

    Article  MathSciNet  Google Scholar 

  • Chikr-Elmezouar Z, Almanjahie IM, Laksaci A, Rachdi M (2019) FDA: strong consistency of the \(k{\rm NN}\) local linear estimation of the functional conditional density and mode. J Nonparametr Stat 31(1):175–195

    Article  MathSciNet  Google Scholar 

  • Collomb G, Härdle W, Hassani S (1987) A note on prediction via estimation of the conditional mode function. J Stat Plan Inference 15(2):227–236

    MathSciNet  Google Scholar 

  • Daouia A, Paindaveine D (2019) From halfspace m-depth to multiple-output expectile regression. arXiv:1905.12718

  • Deheuvels P (2011) One bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetika (Prague) 47(6):855–865

    MathSciNet  Google Scholar 

  • Demongeot J, Laksaci A, Rachdi M, Rahmani S (2014) On the local linear modelization of the conditional distribution for functional data. Sankhya A 76(2):328–355

    Article  MathSciNet  Google Scholar 

  • Demongeot J, Hamie A, Laksaci A, Rachdi M (2016) Relative-error prediction in nonparametric functional statistics: theory and practice. J Multivar Anal 146:261–268

    Article  MathSciNet  Google Scholar 

  • Dony J, Einmahl U. (2009). Uniform in bandwidth consistency of kernel regression estimators at a fixed point. In High dimensional probability V: the Luminy volume, vol. 5 of Inst. Math. Stat. (IMS) Collect., pp 308–325. Inst. Math. Statist., Beachwood, OH

  • Dudley RM (1999) Uniform central limit theorems, vol. 63 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge

  • Efron B (1991) Regression percentiles using asymmetric squared error loss. Stat Sinica 1(1):93–125

    MathSciNet  Google Scholar 

  • Ehm W, Gneiting T, Jordan A, Krüger F (2016) Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings. J R Stat Soc Ser B Stat Methodol 78(3):505–562

    Article  MathSciNet  Google Scholar 

  • Eilers PHC (2013) Discussion: the beauty of expectiles [mr3179527]. Stat Model 13(4):317–322

    Article  MathSciNet  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications, vol 66 of Monographs on Statistics and Applied Probability. Chapman & Hall, London

  • Farooq M, Steinwart I (2019) Learning rates for kernel-based expectile regression. Mach Learn 108(2):203–227

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer Series in Statistics. Springer, New York

  • Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance Stoch 6(4):429–447

    Article  MathSciNet  Google Scholar 

  • Gu Y, Zou H (2016) High-dimensional generalizations of asymmetric least squares regression and their applications. Ann Stat 44(6):2661–2694

    Article  MathSciNet  Google Scholar 

  • Holzmann H, Klar B (2016) Expectile asymptotics. Electron J Stat 10(2):2355–2371

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer Series in Statistics, Springer, New York

  • Kara L-Z, Laksaci A, Rachdi M, Vieu P (2017) Data-driven \(k\)NN estimation in nonparametric functional data analysis. J Multivar Anal 153:176–188

    Article  Google Scholar 

  • Kneib T (2013) Beyond mean regression. Stat Model 13(4):275–303

    Article  MathSciNet  Google Scholar 

  • Koenker R (2005) Quantile regression, vol. 38 of Econometric Society Monographs. Cambridge University Press, Cambridge

  • Koenker R (2013) Discussion: living beyond our means [mr3179527]. Stat Model 13(4):323–333

    Article  MathSciNet  Google Scholar 

  • Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  Google Scholar 

  • Koenker R, Zhao Q (1996) Conditional quantile estimation and inference for ARCH models. Economet Theor 12(5):793–813

    Article  MathSciNet  Google Scholar 

  • Kosorok MR (2008) Introduction to empirical processes and semiparametric inference. Springer Series in Statistics, Springer, New York

  • Krätschmer V, Zähle H (2017) Statistical inference for expectile-based risk measures. Scand J Stat 44(2):425–454

    Article  MathSciNet  Google Scholar 

  • Kuan C-M, Yeh J-H, Hsu Y-C (2009) Assessing value at risk with CARE, the conditional autoregressive expectile models. J Econom 150(2):261–270

    Article  MathSciNet  Google Scholar 

  • Kudraszow NL, Vieu P (2013) Uniform consistency of \(k\)NN regressors for functional variables. Stat Probab Lett 83(8):1863–1870

    Article  Google Scholar 

  • Laksaci A, Lemdani M, Saïd EO (2011) Asymptotic results for an \(L^1\)-norm kernel estimator of the conditional quantile for functional dependent data with application to climatology. Sankhya A 73(1):125–141

    Article  MathSciNet  Google Scholar 

  • Ling N, Vieu P (2018) Nonparametric modelling for functional data: selected survey and tracks for future. Statistics 52(4):934–949

    Article  MathSciNet  Google Scholar 

  • Mohammedi M, Bouzebda S, Laksaci A (2021) The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. J Multivar Anal 181(104673):24

    MathSciNet  Google Scholar 

  • Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica 55(4):819–847

    Article  MathSciNet  Google Scholar 

  • Nolan D, Pollard D (1987) \(U\)-processes: rates of convergence. Ann Stat 15(2):780–799

    Article  MathSciNet  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. Springer Series in Statistics. Springer, New York

  • Rachdi M, Laksaci A, Kaid Z, Benchiha A, Al-Awadhi FA (2021) \(k\)-nearest neighbors local linear regression for functional and missing data at random. Stat Neerl 75(1):42–65

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, second edition. Springer Series in Statistics. Springer, New York

  • Sobotka F, Kneib T (2012) Geoadditive expectile regression. Comput Stat Data Anal 56(4):755–767

    Article  MathSciNet  Google Scholar 

  • Taylor JW (2008) Estimating value at risk and expected shortfall using expectiles. J Financial Econom 6(2):231–252

    Article  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes: with applications to statistics. Springer Series in Statistics. Springer, New York

  • Zhang B (1994) Nonparametric regression expectiles. J Nonparametr.Stat 3(3–4):255–275

    Article  MathSciNet  Google Scholar 

  • Zhao J, Chen Y, Zhang Y (2018) Expectile regression for analyzing heteroscedasticity in high dimension. Stat Probab Lett 137:304–311

    Article  MathSciNet  Google Scholar 

  • Ziegel JF (2016) Coherence and elicitability. Math Finance 26(4):901–918

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, an Associate-Editor, and the referees for their extremely helpful remarks, which resulted in a substantial improvement of the original form of the work and a presentation that was more sharply focused.

Funding

This research project was funded by the Deanship of Scientific Research at King Khalid University through the Research Groups Program under grant number R.G.P. 1/366/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Bouzebda.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix contains supplementary lemmas that are essential parts of providing a more comprehensive understanding of the paper.

Lemma 5

(Theorem 2.14.1 in van der Vaart and Wellner (1996), page 239) Let \(Z_1, Z_2,\ldots , Z_n\) be independent and identically distributed \({{{\mathcal {F}}}}\)-valued random variables and consider \(\mathcal{C}\) a pointwise measurable class of functions g :  \(\mathcal{F}\rightarrow \mathbb {R}\) with envelope function F, then

$$\begin{aligned} \Vert \Vert \alpha _n(g) \Vert _{{{{\mathcal {C}}}}}\Vert _p\le C J(1, {{{\mathcal {C}}}})\Vert F\Vert _{p\vee 2}, \end{aligned}$$

where

$$\begin{aligned} \alpha _n(g)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n(g(Z_i)-{\mathrm {I\!E}}g(Z_i)), \\ J(1, {{{\mathcal {C}}}})= & {} \displaystyle \sup _Q \int _0^1 \sqrt{1+\log {{{\mathcal {N}}}} (\epsilon \Vert F\Vert _{Q,2},{{{\mathcal {C}}}},d_Q)}d\epsilon , \\ \Vert \alpha _n(g) \Vert _{{{{\mathcal {C}}}}}= & {} \sup _{g\in {{\mathcal {C}}}}|\alpha _n(g) |, \end{aligned}$$

with \(\Vert \cdot \Vert _p={\mathrm {I\!E}}^{1/p}[\cdot ]^p\) and \(s\vee t \) denoting the maximum of s and t.

Lemma 6

(Theorem 3.1 in Dony and Einmahl 2009) Let \({{{\mathcal {C}}}}\) be a a pointwise measurable class of functions g :  \(\mathcal{F}\rightarrow \mathbb {R}\) satisfying:

$$\begin{aligned} {\mathrm {I\!E}}\Vert \alpha _n(g) \Vert _{{{{\mathcal {C}}}}}\le C \Vert F\Vert _{2}, \end{aligned}$$

with F is an envelope function of \({{{\mathcal {C}}}}\). Then, for any \(A\in {{{\mathcal {A}}}}\), we have:

$$\begin{aligned} {\mathrm {I\!E}}\Vert \alpha _n(g.\mathbb {1}_A) \Vert _{{{{\mathcal {C}}}}}\le 2C \Vert F.\mathbb {1}_A\Vert _{ 2}. \end{aligned}$$

Lemma 7

(Theorem 4.1 in Dony and Einmahl 2009) Let \(Z_1, Z_2,\ldots , Z_n\) be independent and identically distributed \({{{\mathcal {F}}}}\)-valued random variables and consider \({{{\mathcal {C}}}}\) a pointwise measurable class of functions g :  \({{{\mathcal {F}}}}\rightarrow \mathbb {R}\) with envelope function F. Assume that for some \(H>0\):

$$\begin{aligned} {\mathrm {I\!E}}[F^p(Z)]\le \frac{p!}{2}\sigma ^2H^{p-2} \hbox { where } \sigma ^2\ge {\mathrm {I\!E}}[F^2(Z)]. \end{aligned}$$

Then, for \(\beta _n={\mathrm {I\!E}}[\Vert \sqrt{n}\alpha _n(g) \Vert _{{{{\mathcal {C}}}}}]\), we have for any \(t>0\):

$$\begin{aligned} \textrm{I}\!\textrm{P}\left\{ \max _{1\le k\le n}\Vert \alpha _n(g) \Vert _{{{{\mathcal {C}}}}}\ge \beta _n+t\right\} \le \exp \left( -\frac{t^2}{2n\sigma ^2+2tH}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almanjahie, I.M., Bouzebda, S., Kaid, Z. et al. The local linear functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors. Metrika (2024). https://doi.org/10.1007/s00184-023-00942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00184-023-00942-0

Keywords

Mathematics Subject Classification

Navigation