Skip to main content
Log in

Comparing first and second price auctions with asymmetric bidders

  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We study procurement auctions in which, as is common in practice, a group of sellers (incumbents, qualified bidders) is given an advantage, based, for example, on better reliability, quality, or incumbency status. We show conditions under which for any given first price handicap auction, there is a simple second-price design which dominates it. This generalizes a previous result for the case of an auction with one insider and one outsider (Mares and Swinkels in J Econ Theory, 2013) and sharpens our understanding of the classical result by Maskin and Riley (Rev Econ Stud 67:413–438, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This paper uses a simple but robust model of differentiation. Each time the auctioneer buys from one of the incumbents he enjoys a known benefit of \(\Delta \) relative to a purchase at the same price form one of the outsiders. This is a key difference in the modeling choice relative to Che (1993) where \(\Delta \) is contract variable, or Rezende (2009) where \(\Delta \) is ex-ante unknown even to the buyer.

  2. For empirical work on this topic see e.g., Marion (2007, 2009). See also Kirkegaard (2012) for an interesting extension to contests.

  3. Most scoring rules based on first-price designs are of this form (see Asker and Cantillon 2010; The World Bank 2004).

  4. For open auction designs which have the same property see Shachat and Swarthout (2010).

  5. It is equivalent to consider an auction in which bids are restricted to be at most 1 by an outsider and \(1-A\) by an insider, and in which the low bidder wins, but an insider receives his bid plus \(A\) if he wins. See Mares and Swinkels (2013) for details of this in the case of a single insider and single outsider.

  6. That equilibrium bid functions \(\beta _{I}\) and \(\beta _{O}\) exist and are monotone and atomless is essentially as in Reny and Zamir (2004). It is also clear that there can be no gaps, which is to say, a region \(\left( b_{L},b_{H}\right) \) in the interior of the support of bids where \(\beta _{I} \) jumps past \(\left( b_{L},b_{H}\right) ,\) and \(\beta _{O}\) jumps past \( \left( b_{L}-A,b_{H}-A\right) \). But, it is an open question whether both types of players are active at all bids.

  7. In the two-bidder case with one incumbent and an outsider\(,\) one can show that \(\beta _{I}\left( 0\right) =\beta _{O}\left( 0\right) +A\), so that \( \phi (0)=0\). This is not in general true here.

  8. The second inequality is due to Prekopa (1971, 1973) and Borell (1975). A slightly more general version of the first inequality is shown by Mares and Swinkels (2013), and by Weyl and Fabinger (2013).

  9. Define \(\phi _{M}\left( c\right) =0\) if the expression is positive for all \(c\).

  10. The first equation follows by observing that \(vs_{I}\left( c_{O}\right) -vs_{O}\left( c_{O}\right) =\Delta ,\) and that \(vs_{I}^{\prime }>1,\) and the second by implicit differentiation of (3).

  11. Observe that if \(F(c)=c^{\alpha }\) for some \(\alpha >0,\) then \(\eta _{M}^{\prime }\equiv 1\). In these cases an appropriately chosen SPBA implements the optimal allocation exactly.

  12. We use \(\rho _{F}\) decreasing only to establish \(\phi _{M}^{\prime }\le 1\). It turns out that for most cases even if \(\rho _{F}\) is not decreasing, \( \phi _{M}^{\prime }\) is not too far above 1. For details and the implications see Mares and Swinkels (2011).

  13. The geometric intuition behind the proof is similar to that in Mares and Swinkels (2013). However, the technical steps are in the analysis are substantially different and rely on novel tools in of deriving the necessary surplus bounds and interior minima.

  14. No calculation that follows is affected by the normalization, and so we ignore it for compactness.

  15. In the two bidder case, a somewhat arduous proof showed that this could not occur. That line of proof seems daunting here, and so we follow a substantially different approach here to finding a candidate \(r\).

  16. Until we take our specific surplus approximation, everything that follows would hold at any interior minimum of \(\phi ^{\prime }\).

References

  • Asker J, Cantillon E (2010) Procurement when price and quality matter. RAND J Econ 41:1–34

    Article  Google Scholar 

  • Borell C (1975) Convex set functions in \(d\)-space. Periodica Mathematica Hungarica 6:111–136

    Article  Google Scholar 

  • Cabral L, Greenstein S (1990) Switching costs and bidding parity in government procurement of computer systems. J Law Econ Organ 6(2):453–469

    Google Scholar 

  • Che Y-K (1993) Design competition through multidimensional auctions. RAND J Econ 24(4):668–680

    Article  Google Scholar 

  • Kirkegaard R (2012) Favoritism in asymmetric contests, head starts and handicaps. Games Econ Behav 76:226–248

    Article  Google Scholar 

  • Mares V, Swinkels JM (2011) On the near-optimality of second price auctions. Games Econ Behav 72(1):218–241

    Article  Google Scholar 

  • Mares V, Swinkels JM (2013) On the analysis of asymmetric first price auctions. J Econ Theory (forthcoming)

  • Marion J (2007) Are bid preferences benign? The effect of small business subsidies in highway procurement auctions. J Public Econ 91:1591–1624

    Article  Google Scholar 

  • Marion J (2009) How costly is affirmative action? Government contracting and California’s Proposition 209. Rev Econ Stat 91:503–522

    Article  Google Scholar 

  • Maskin E, Riley J (2000) Asymmetric auctions. Rev Econ Stud 67:413–438

    Article  Google Scholar 

  • McAfee P, McMillan J (1988) Government procurement and international trade. J Int Econ 26:291–308

    Article  Google Scholar 

  • Myerson R (1981) Optimal auction design. Math Oper Res 6(1):58–73

    Article  Google Scholar 

  • Prekopa A (1971) Logarithmic concave measures with applications to stochastic programming. Acta Sci Math (Szeged) 32:301–315

    Google Scholar 

  • Prekopa A (1973) On logarithmic concave measures and functions. Acta Sci Math (Szeged) 34:335–343

    Google Scholar 

  • Reny PJ, Zamir S (2004) On the existence of pure strategy monotone equilibria in asymmetric first-price auctions. Econometrica 72:1105–1126

    Article  Google Scholar 

  • Rezende L (2009) Biased procurement auctions. Econ Theory 38:169–185

    Article  Google Scholar 

  • Riley JG, Samuelson WF (1981) Optimal auctions. Am Econ Rev 71:381–392

    Google Scholar 

  • Shachat J, Swarthout TJ (2010) Procurement auctions for differentiated goods. Decis Anal 7:6–22

    Article  Google Scholar 

  • The World Bank (2004) Guidelines: procurement of goods and services by World Bank borrowers. The International Bank for Reconstruction and Development, The World Bank, Washington, DC

  • Weyl G, Fabinger M (2013) Pass-through as an economic tool: principles of incidence under imperfect competition. J Polit Econ (forthcoming)

  • Wolfstetter E, Lengwiler Y (2006) Corruption in procurement auctions. Available at SSRN: http://ssrn.com/abstract=874705

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Mares.

Appendix

Appendix

Proof of Lemma 1

Note first that because there are no atoms and \(\beta _{I}(c)\le 1,\) a bid of \(1-A\) or above gives zero profit to an outsider as does a bid \(\beta _{O}(c)=c\). But any bid \(b\in (c,1-A)\) makes \(b-c>0\) when it wins, and at a minimum wins when \(c_{i}\in (b+A,1]\) for all incumbents and \(c_{j}\in (b,1]\) for all other outsiders. The fact that \(\phi (1-A)=1\) follows directly.

Next, let us show that \(\beta _{I}\left( 0\right) \le \beta _{0}\left( 0\right) +A,\) so that \(\phi \left( 0\right) \ge 0\). Assume that this is false. It must then be that \(n_{O}>1,\) else the (single) outsider is submitting bids strictly below where he is already winning for sure. Let \(R\) be the support of bids submitted by \(O\) that are below \(\beta _{I}\left( 0\right) -A\). Standard arguments tell us that bids are non-atomic on \( R, \) that \(R\) is an interval, and that the upper bound \(\bar{r}\) of \(R\) is equal to \(\beta _{I}\left( 0\right) -A\) (since otherwise, there is an effective gap in the support of bids). Equivalently, \(\beta _{O}\) is continuous and strictly increasing on \(\beta _{O}^{-1}\left( R\right) \). For any given \(b\in R,\) let \(\bar{H}\left( b\right) =\bar{F}\left( \beta _{O}^{-1}\left( b\right) \right) \) be the probability that any given outsider bids above \(b,\) and let \(h\left( \cdot \right) \) be the associated density. The profits of an outsider with cost \(c\) and bid \(b\) can be expressed as

$$\begin{aligned} \Pi _{O}\left( c,b\right) =\bar{H}^{n_{O}-1}\left( b\right) \left( b-c\right) , \end{aligned}$$

and so

$$\begin{aligned} \frac{\partial }{\partial b}\Pi _{O}\left( c,b\right) =\left( n_{O}-1\right) \bar{H}^{n_{O}-2}\left( b\right) \left( -h\left( b\right) \right) \left( b-c\right) +\bar{H}^{n_{O}-1}\left( b\right) , \end{aligned}$$

which has the same sign as

$$\begin{aligned} -\left( n_{O}-1\right) h\left( b\right) \left( b-c\right) +\bar{H}\left( b\right) . \end{aligned}$$

Evaluated at \(c=\beta _{O}^{-1}\left( b\right) ,\) this equals 0.

But, if we let \(\Pi _{I}\left( c,b\right) \) be analogously defined as the profits of an incumbent, we have (for \(b\in \,R\)) that

$$\begin{aligned} \Pi _{I}\left( 0,b+A\right) =\bar{H}^{n_{O}}\left( b\right) \left( b+A\right) , \end{aligned}$$

and so

$$\begin{aligned} \frac{\partial }{\partial b}\Pi _{O}\left( 0,b+A\right) =n_{O}\bar{H} ^{n_{O}-1}\left( b\right) \left( -h\left( b\right) \right) \left( b+A\right) +\bar{H}^{n_{O}}\left( b\right) , \end{aligned}$$

which has the same sign as

$$\begin{aligned} -n_{O}h\left( b\right) \left( b+A\right) +\bar{H}\left( b\right) . \end{aligned}$$

But then, since \(\left( b+A\right) >b>b-\beta _{O}^{-1}\left( b\right) ,\)

$$\begin{aligned} \frac{\partial }{\partial b}\Pi _{O}\left( 0,b+A\right) <0. \end{aligned}$$

As this holds for all \(b\in R,\) when \(I\) has cost 0, his profits strictly increase by lowering his bid a little, and by continuity, this holds for all \(c\) sufficiently close to 0 as well. Hence, \(\beta _{I}\) is not optimal, a contradiction. But then, note that by (1)

$$\begin{aligned} \beta _{I}\left( \phi \left( 0\right) \right) =\beta _{I}\left( 0\right) +A\ge \beta _{I}\left( 0\right) \end{aligned}$$

and hence \(\phi \left( 0\right) \ge 0\) since \(\beta _{I}\) is increasing.

Thus, since \(\beta _{I}\left( \cdot \right) \) and \(\beta _{O}\left( \cdot \right) \) are continuous and increasing, (1) is well defined for \( c\in \left[ 0,1-A\right] \). \(\square \)

Proof of Lemma 2

Let us show first that if \(F\) and \(G\) are concave positive functions and if \(\alpha \ge 0\) and \(\beta \ge 0\) satisfy \(\alpha +\beta \le 1,\) then \(H=F^{\alpha }G^{\beta }\) is concave. The claimed result then follows since by definition, \(F^{\rho }\) and \(G^{\rho }\) are concave, and so \(H^{\rho }\) is concave.

Observe that

$$\begin{aligned} \frac{H^{\prime }}{H}=\underset{\equiv J}{\underbrace{\alpha \frac{F^{\prime }}{F}+\beta \frac{G^{\prime }}{G}}} \end{aligned}$$

and thus, since \(H^{\prime }=HJ,\)

$$\begin{aligned} H^{\prime \prime }&= \left( HJ\right) ^{\prime } \\&= H^{\prime }J+HJ^{\prime } \\&= HJ^{2}+HJ^{\prime } \end{aligned}$$

which has the same sign as \(J^{2}+J^{\prime }\). But

$$\begin{aligned} J^{\prime }=\alpha \left( \frac{F^{\prime \prime }}{F}-\left( \frac{ F^{\prime }}{F}\right) ^{2}\right) +\beta \left( \frac{G^{\prime \prime }}{G} -\left( \frac{G^{\prime }}{G}\right) ^{2}\right) \end{aligned}$$

and thus \(J^{2}+J^{\prime }\) is equal to

$$\begin{aligned}&\left( \alpha \frac{F^{\prime }}{F}+\beta \frac{G^{\prime }}{G}\right) ^{2}+\alpha \left( \frac{F^{\prime \prime }}{F}-\left( \frac{F^{\prime }}{F} \right) ^{2}\right) +\beta \left( \frac{G^{\prime \prime }}{G}-\left( \frac{ G^{\prime }}{G}\right) ^{2}\right) \\&\qquad =\alpha \frac{F^{\prime \prime }}{F}+\beta \frac{G^{\prime \prime }}{G} +\alpha ^{2}\left( \frac{F^{\prime }}{F}\right) ^{2}+2\alpha \beta \frac{ F^{\prime }}{F}\frac{G^{\prime }}{G}+\beta ^{2}\left( \frac{G^{\prime }}{G}\right) ^{2} \\&\qquad \quad -\alpha \left( \frac{F^{\prime }}{F}\right) ^{2}-\beta \left( \frac{ G^{\prime }}{G}\right) ^{2} \\&\qquad \le \alpha (\alpha -1)\left( \frac{F^{\prime }}{F}\right) ^{2}+2\alpha \beta \frac{F^{\prime }}{F}\frac{G^{\prime }}{G}+\beta \left( \beta -1\right) \left( \frac{G^{\prime }}{G}\right) ^{2} \end{aligned}$$

since \(F^{\prime \prime },G^{\prime \prime }\le 0\).

Since \(\alpha +\beta \le 1,\,\alpha -1\le -\beta ,\) and so

$$\begin{aligned} \alpha (\alpha -1)\le -\alpha \beta , \end{aligned}$$

and similarly,

$$\begin{aligned} \beta \left( \beta -1\right) \le -\alpha \beta . \end{aligned}$$

Hence,

$$\begin{aligned} J^{2}+J^{\prime }&\le -\alpha \beta \left( \left( \frac{F^{\prime }}{F} \right) ^{2}-2\frac{F^{\prime }}{F}\frac{G^{\prime }}{G}+\left( \frac{G^{\prime }}{G}\right) ^{2}\right) \\&= -\alpha \beta \left( \frac{F^{\prime }}{F}-\frac{G^{\prime }}{G}\right) ^{2} \\&\le 0. \end{aligned}$$

Thus, \(H^{\prime \prime }\le 0,\) and so \(H\) is concave. \(\square \)

Proof of Proposition 1

Differentiate the second and third expressions of (5), and rearrange to get

$$\begin{aligned} 0=\bar{Q}_{O}\left( \phi \left( c\right) \right) \beta _{O}^{\prime }\left( c\right) -q_{O}\left( \phi \left( c\right) \right) \phi ^{\prime }\left( c\right) \left( \beta _{O}\left( c\right) -c\right) \end{aligned}$$

or

$$\begin{aligned} \beta _{O}^{\prime }\left( c\right) =\frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}\left( \phi \left( c\right) \right) }\phi ^{\prime }\left( c\right) \left( \beta _{O}\left( c\right) -c\right) . \end{aligned}$$

Thus,

$$\begin{aligned} \beta _{O}^{\prime }\left( c\right) =\phi ^{\prime }\left( c\right) S_{O}\left( c\right) \frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q} _{O}^{2}\left( \phi \left( c\right) \right) }. \end{aligned}$$
(12)

Analogously, from (7)

$$\begin{aligned} 0=\bar{Q}_{I}\left( \psi \left( c\right) \right) \beta _{I}^{\prime }\left( c\right) -q_{I}\left( \psi \left( c\right) \right) \psi ^{\prime }\left( c\right) \left( \beta _{I}\left( c\right) -c\right) \end{aligned}$$

or

$$\begin{aligned} \beta _{I}^{\prime }\left( c\right) =\frac{q_{I}\left( \psi \left( c\right) \right) }{\bar{Q}_{I}\left( \psi \left( c\right) \right) }\psi ^{\prime }\left( c\right) \left( \beta _{I}\left( c\right) -c\right) , \end{aligned}$$

and so

$$\begin{aligned} \beta _{I}^{\prime }\left( \phi \left( c\right) \right) =S_{I}\left( \phi \left( c\right) \right) \frac{q_{I}\left( c\right) }{\bar{Q}_{I}^{2}\left( c\right) }\frac{1}{\phi ^{\prime }\left( c\right) }. \end{aligned}$$
(13)

Differentiate (1) to get

$$\begin{aligned} \phi ^{\prime }\left( c\right) =\frac{\beta _{O}^{\prime }\left( c\right) }{ \beta _{I}^{\prime }\left( \phi \left( c\right) \right) }. \end{aligned}$$

Substituting (12) and (13) yields

$$\begin{aligned} \phi ^{\prime }\left( c\right) =\frac{\phi ^{\prime }\left( c\right) S_{O}\left( c\right) }{S_{I}\left( \phi \left( c\right) \right) \frac{1}{ \phi ^{\prime }\left( c\right) }}\left( \frac{\frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}^{2}\left( \phi \left( c\right) \right) }}{ \frac{q_{I}\left( c\right) }{\bar{Q}_{I}^{2}\left( c\right) }}\right) \end{aligned}$$

or,

$$\begin{aligned} \phi ^{\prime }\left( c\right) =\frac{S_{I}\left( \phi \left( c\right) \right) }{S_{O}\left( c\right) }\left( \frac{\frac{q_{I}\left( c\right) }{ \bar{Q}_{I}^{2}\left( c\right) }}{\frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}^{2}\left( \phi \left( c\right) \right) }}\right) . \end{aligned}$$

For the differentiability of \(\beta _{I},\beta _{O}\) and \(\phi \) follow the same argument as in Mares and Swinkels (2013). That \(\phi ^{\prime }\left( c\right) >0\) on \([0,1-A)\) follows from (7) noting that the integrand is strictly positive at \(\phi (c)<1\) and thus for some interval to the right of \(\phi (c)\). \(\square \)

Proof of Lemma 3

Note that

$$\begin{aligned} \frac{\frac{q_{I}}{\bar{Q}_{I}}\left( c\right) }{\frac{q_{O}}{\bar{Q}_{O}} \left( \phi \left( c\right) \right) }&= \frac{-\frac{\partial }{\partial c} \log \bar{Q}_{I}\left( c\right) }{\left. -\frac{\partial }{\partial s}\log \bar{Q}_{O}\left( s\right) \right| _{s=\phi \left( c\right) }} \\&= \frac{n_{O}\frac{f}{\bar{F}}\left( c\right) +\left( n_{I}-1\right) \phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }{\left. \left( n_{O}-1\right) \psi ^{\prime }\left( s\right) \frac{f }{\bar{F}}\left( \psi \left( s\right) \right) +n_{I}\frac{f}{\bar{F}} \left( s\right) \right| _{s=\phi \left( c\right) }} \\&= \frac{n_{O}\frac{f}{\bar{F}}\left( c\right) +\left( n_{I}-1\right) \phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }{\left( n_{O}-1\right) \frac{1}{\phi ^{\prime }\left( c\right) } \frac{f}{\bar{F}}\left( c\right) +n_{I}\frac{f}{\bar{F}}\left( \phi \left( c\right) \right) } \\&= \phi ^{\prime }\left( c\right) \left( \frac{n_{O}\frac{f}{\bar{F}}\left( c\right) +\left( n_{I}-1\right) \phi ^{\prime }\left( c\right) \frac{f}{\bar{ F}}\left( \phi \left( c\right) \right) }{\left( n_{O}-1\right) \frac{f}{\bar{ F}}\left( c\right) +n_{I}\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}} \left( \phi \left( c\right) \right) }\right) \\&= \phi ^{\prime }\left( c\right) \left( 1+\frac{\frac{f}{\bar{F}}\left( c\right) -\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }{\left( n_{O}-1\right) \frac{f}{\bar{F}}\left( c\right) +n_{I}\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }\right) . \end{aligned}$$

\(\square \)

Proof of Corollary 1

Using (9) and (10),

$$\begin{aligned} 1=\frac{S_{I}\left( \phi \left( c\right) \right) }{S_{O}\left( c\right) } \frac{\bar{Q}_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{I}\left( c\right) }T\left( c\right) . \end{aligned}$$

But, from (7) and (5) we have

$$\begin{aligned} \frac{S_{I}(\phi (c))}{S_{O}(c)}\frac{\bar{Q}_{O}(\phi (c))}{\bar{Q}_{I}(c)}= \frac{\beta _{I}\left( \phi (c)\right) -\phi (c)}{\beta _{O}\left( c\right) -c}. \end{aligned}$$

while by (1)

$$\begin{aligned} \frac{\beta _{I}\left( \phi (c)\right) -\phi (c)}{\beta _{O}\left( c\right) -c}=\frac{\beta _{O}\left( c\right) +A-\phi (c)}{\beta _{O}\left( c\right) -c }=1+\frac{A+c-\phi (c)}{\beta _{O}\left( c\right) -c}. \end{aligned}$$

Combining these three expressions yields the result. \(\square \)

Proof of Proposition 2

We proceed through a series of lemmas. \(\square \)

Lemma 7

For any \(c<1-A\) and \(\phi \left( c\right) =c,\,\phi ^{\prime }\left( c\right) >1\).

Proof

Recall from Corollary 1 that

$$\begin{aligned} 1=\left( 1+\frac{\frac{f}{\bar{F}}\left( c\right) -\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }{\left( n_{O}-1\right) \frac{f}{\bar{F}}\left( c\right) +n_{I}\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }\right) \left( 1+\frac{A+c-\phi (c)}{\beta _{O}\left( c\right) -c}\right) , \end{aligned}$$

which when \(\phi \left( c\right) =c\) reduces to

$$\begin{aligned} 1=\left( 1+\frac{1-\phi ^{\prime }\left( c\right) }{n_{O}-1+\left( n_{I}\right) \phi ^{\prime }\left( c\right) }\right) \left( 1+\frac{A}{\beta _{O}\left( c\right) -c}\right) . \end{aligned}$$

Since \(\beta _{O}\left( c\right) \ge c\) for all \(c,\) the last term is greater than 1. Thus it must be that

$$\begin{aligned} 1+\frac{1-\phi ^{\prime }\left( c\right) }{n_{O}-1+\left( n_{I}\right) \phi ^{\prime }\left( c\right) }<1 \end{aligned}$$

or

$$\begin{aligned} \phi ^{\prime }\left( c\right) -1>0. \end{aligned}$$

\(\square \)

Corollary 3

\(\phi \left( c\right) >c\) for all \(c>0\).

This is immediate, since by Lemma 1 \(\phi \left( 0\right) \ge 0,\) and by Lemma 7 anytime that \(\phi \left( c\right) =c,\,\phi \left( c\right) -c\) is strictly increasing.

Next, let us show that \(\phi \left( c\right) <c+A\) for all \(c\).

Lemma 8

\(\phi \left( 0\right) \le A\).

Proof

Assume \(\phi \left( 0\right) >A\). Choose \(\hat{c} \in \left( A,\phi \left( 0\right) \right) \). For any \(b\in \left( \beta _{I}\left( \hat{c}\right) ,\beta _{O}\left( 0\right) +A\right) ,\) let \(\bar{H }\left( b\right) =\Pr \left( I\text { bids above }b\right) =\bar{F}\left( \beta _{I}^{-1}\left( b\right) \right) \). Fix any such \(\tilde{b},\) and let \( \tilde{c}=\beta _{I}^{-1}\left( \tilde{b}\right) >\hat{c}>A\). Note that for \( b\in \left( \beta _{I}\left( \hat{c}\right) ,\beta _{O}\left( 0\right) +A\right) ,\)

$$\begin{aligned} \Pi _{I}\left( c,b\right) =\bar{H}^{n_{I}-1}\left( b\right) \left( b-c\right) \end{aligned}$$

and so

$$\begin{aligned} \frac{\partial }{\partial b}\Pi _{I}\left( c,b\right) =\bar{H} ^{n_{I}-2}\left( b\right) \left( -\left( n_{I}-1\right) h\left( b\right) \left( b-c\right) +\bar{H}\left( b\right) \right) . \end{aligned}$$

Thus,

$$\begin{aligned} \left( -\left( n_{I}-1\right) h\left( \tilde{b}\right) \left( \tilde{b}- \tilde{c}\right) +\bar{H}\left( \tilde{b}\right) \right) =0, \end{aligned}$$

and so,

$$\begin{aligned} \left( -n_{I}h\left( \tilde{b}\right) \left( \tilde{b}-\tilde{c}\right) + \bar{H}\left( \tilde{b}\right) \right) <0, \end{aligned}$$

But then, for any \(c<\hat{c}-A,\,\tilde{b}-A-c>\tilde{b}-\tilde{c}\) and so

$$\begin{aligned} \left( -n_{I}h\left( \tilde{b}\right) \left( \tilde{b}-A-c\right) +\bar{H} \left( \tilde{b}\right) \right) <0, \end{aligned}$$

and so

$$\begin{aligned} \frac{\partial }{\partial b}\Pi _{O}\left( c,\tilde{b}-A\right) <0. \end{aligned}$$

Since this is true for all \(\tilde{b}\in \left( \beta _{I}\left( \hat{c} \right) ,\beta _{O}\left( 0\right) +A\right) ,\) and hence for all \(\tilde{b} -A\in \left( \beta _{I}\left( \hat{c}\right) -A,\beta _{O}\left( 0\right) \right) \) But then, any outsider with cost \(\hat{c}-A\) is better of with bids strictly below \(\beta _{O}\left( 0\right) \) than with \(\beta _{O}\left( 0\right) ,\) contradicting the optimality of \(\beta _{O}\) for types near 0. \(\square \)

Lemma 9

For all \(c\ge 0,\,\phi \left( c\right) <c+A\).

Proof

Recall from Corollary 1 that

$$\begin{aligned} 1=\left( 1+\frac{\frac{f}{\bar{F}}\left( c\right) -\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }{\left( n_{O}-1\right) \frac{f}{\bar{F}}\left( c\right) +n_{I}\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( \phi \left( c\right) \right) }\right) \left( 1+\frac{A+c-\phi (c)}{\beta _{O}\left( c\right) -c}\right) . \end{aligned}$$

When \(\phi \left( c\right) =c+A,\) the second term is 1. Thus,

$$\begin{aligned} 1=1+\frac{\frac{f}{\bar{F}}\left( c\right) -\phi ^{\prime }\left( c\right) \frac{f}{\bar{F}}\left( c+A\right) }{n_{O}\frac{f}{\bar{F}}\left( c\right) +\left( n_{I}-1\right) \frac{f}{\bar{F}}\left( c+A\right) \phi ^{\prime }\left( c\right) } \end{aligned}$$

The denominator of the fraction is positive and so

$$\begin{aligned} \frac{f}{\bar{F}}\left( c\right) -\phi ^{\prime }\left( c\right) \frac{f}{ \bar{F}}\left( c+A\right) =0. \end{aligned}$$

Since \(\frac{f}{\bar{F}}\) is increasing, it follows that \(\phi ^{\prime }\left( c\right) <1\). Thus \(\phi \left( c\right) \) crosses \(c+A\) at most once and from above. Since by Lemma 8 \(\phi \left( 0\right) \le A\) we have our desired result. \(\square \)

Proof of Lemma 4

Recall from Lemma 1 that \(\phi \left( 0\right) \ge 0\). If \(\phi \left( 0\right) =0,\) then (8) reduces to \(\phi ^{\prime }=\frac{ S_{I}\left( 0\right) }{S_{O}\left( 0\right) }>1,\) since \(S_{I}\left( 0\right) >S_{O}\left( 0\right) \).

So, assume that \(\phi \left( 0\right) >0\). The proof will proceed in three steps.

  • Step 1 Note that \(\beta _{I}\) is differentiable on \( [0,\phi \left( 0\right) )\) and on \((\phi \left( 0\right) ,1-A)\). The second part of this statement follows from Proposition 1. The first part is a direct consequence that for cost types below \(\phi \left( 0\right) \) only incumbents are competing and thus \(\beta _{I}\) follows the construction of a standard symmetric first price auction.

  • Step 2 Let

    $$\begin{aligned} P_{I}\left( s\right) \equiv \bar{F}^{n_{I}-1}\left( s\right) \bar{F} ^{n_{O}}\left( \psi \left( s\right) \right) . \end{aligned}$$

    This is the probability that \(I\) wins when be bids \(\beta _{I}\left( s\right) \). Let

    $$\begin{aligned} \Pi _{I}\left( c,s\right) =P_{I}\left( s\right) \left( \beta _{I}\left( s\right) -c\right) \end{aligned}$$

    be the profit of \(I\) with type \(c\) when he bids \(\beta _{I}\left( s\right) \). Let

    $$\begin{aligned} P_{O}\left( s\right) \equiv \bar{F}^{n_{I}}\left( s\right) \bar{F} ^{n_{O}-1}\left( \psi \left( s\right) \right) . \end{aligned}$$

    This is the probability that \(O\) wins with bid \(\beta _{I}\left( s\right) -A. \) Let

    $$\begin{aligned} \Pi _{O}\left( c,s\right) =P_{O}\left( s\right) \left( \beta _{I}\left( s\right) -A-c\right) \end{aligned}$$

    be the profit of \(I\) with type \(c\) when he bids \(\beta _{I}\left( s\right) -A\).

  • Step 3 Note that it cannot be that \(\left[ \Pi _{O}\left( 0,s\right) \right] _{s}<0\) for all \(s\) on some interval of the form \([\hat{c} ,\phi \left( 0\right) ),\) since if it was, then we would have

    $$\begin{aligned} \Pi _{O}\left( 0,\hat{c}\right) >\Pi _{O}\left( 0,\phi \left( 0\right) \right) . \end{aligned}$$

    But, noting that \(\beta _{I}\left( \phi \left( 0\right) \right) -A=\beta _{O}\left( 0\right) ,\) the RHS is \(O\)’s equilibrium payoff with \(c=0,\) a contradiction.

Form a sequence \(\left\{ c^{k}\right\} \) with \(c^{k}\rightarrow \phi \left( 0\right) ,\) such that \(c^{k}<\phi \left( 0\right) \) and \(\left. \left[ \Pi _{O}\left( 0,s\right) \right] _{s}\right| _{s=c^{k}}\ge 0\) for all \(k\). Note that

$$\begin{aligned} \left. \left[ \Pi _{O}\left( 0,s\right) \right] _{s}\right| _{s=c^{k}} =\frac{P_{O}^{\prime }}{P_{O}}\left( s\right) +\frac{\beta _{I}^{\prime }\left( s\right) }{\beta _{I}\left( s\right) -A-c} \end{aligned}$$
(14)

which has the same sign as

$$\begin{aligned} \frac{P_{O}^{\prime }}{P_{O}}\left( s\right) \frac{\beta _{I}\left( s\right) -A-c}{\beta _{I}^{\prime }\left( s\right) }+1, \end{aligned}$$

and so, for all \(k,\) we have

$$\begin{aligned} \frac{-P_{O}^{\prime }}{P_{O}}\left( c^{k}\right) \frac{\beta _{I}\left( c^{k}\right) -A}{\beta _{I}^{\prime }\left( c^{k}\right) }\le 1. \end{aligned}$$
(15)

Similarly,

$$\begin{aligned} \left[ \log \Pi _{I}\left( c,s\right) \right] _{s}=\frac{ P_{I}^{\prime }}{P_{I}}\left( s\right) +\frac{\beta _{I}^{\prime }\left( s\right) }{\beta _{I}\left( s\right) -c} \end{aligned}$$
(16)

which has the same sign as

$$\begin{aligned} \frac{P_{I}^{\prime }}{P_{I}}\left( s\right) \frac{\beta _{I}\left( s\right) -c}{\beta _{I}^{\prime }\left( s\right) }+1, \end{aligned}$$

and so, for all \(k,\)

$$\begin{aligned} \frac{-P_{I}^{\prime }}{P_{I}}\left( c^{k}\right) \frac{\beta _{I}\left( c^{k}\right) -c^{k}}{\beta _{I}^{\prime }\left( c^{k}\right) }=1. \end{aligned}$$
(17)

Comparing (15) and (17) ,

$$\begin{aligned} \frac{-P_{O}^{\prime }}{P_{O}}\left( c^{k}\right) \left( \beta _{I}\left( c^{k}\right) -A\right) \le \frac{-P_{I}^{\prime }}{P_{I}}\left( c^{k}\right) \left( \beta _{I}\left( c^{k}\right) -c\right) . \end{aligned}$$
(18)

But,

$$\begin{aligned} \frac{-P_{O}^{\prime }}{P_{O}}\left( s\right) =n_{I}\frac{f}{\bar{F}}\left( s\right) +\left( n_{O}-1\right) \frac{f}{\bar{F}}\left( s\right) \left( \psi \left( s\right) \right) \psi ^{\prime }\left( s\right) \end{aligned}$$
(19)

and

$$\begin{aligned} \frac{-P_{I}^{\prime }}{P_{I}}\left( s\right) =\left( n_{I}-1\right) \frac{f }{\bar{F}}\left( s\right) +n_{O}\frac{f}{\bar{F}}\left( s\right) \left( \psi \left( s\right) \right) \psi ^{\prime }\left( s\right) . \end{aligned}$$
(20)

Since \(c^{k}<\phi \left( 0\right) ,\,\psi ^{\prime }\left( c^{k}\right) =0,\) and (18) reduces to

$$\begin{aligned} n_{I}\frac{f}{\bar{F}}\left( c^{k}\right) \left( \beta _{I}\left( c^{k}\right) -A\right) \le \left( n_{I}-1\right) \frac{f}{\bar{F}}\left( c^{k}\right) \left( \beta _{I}\left( c^{k}\right) -c^{k}\right) \end{aligned}$$

or

$$\begin{aligned} \frac{\beta _{I}\left( c^{k}\right) -c^{k}}{\beta _{I}\left( c^{k}\right) -A} \ge \frac{n_{I}}{n_{I}-1}. \end{aligned}$$
(21)

As this is true for all \(k,\)

$$\begin{aligned} \frac{\beta _{I}\left( \phi \left( 0\right) \right) -\phi \left( 0\right) }{ \beta _{I}\left( \phi \left( 0\right) \right) -A}\ge \frac{n_{I}}{n_{I}-1}. \end{aligned}$$
(22)

Now, form a sequence \(\left\{ c^{k}\right\} \) with \(c^{k}\rightarrow \phi \left( 0\right) ,\) such that \(c^{k}>\phi \left( 0\right) \) for all \(k\). At each \(k,\) we have

$$\begin{aligned} \frac{-P_{O}^{\prime }}{P_{O}}\left( c^{k}\right) \frac{\beta _{I}\left( c^{k}\right) -A-c^{k}}{\beta _{I}^{\prime }\left( c^{k}\right) }=1 \end{aligned}$$

and

$$\begin{aligned} \frac{-P_{I}^{\prime }}{P_{I}}\left( c^{k}\right) \frac{\beta _{I}\left( c^{k}\right) -c^{k}}{\beta _{I}^{\prime }\left( c^{k}\right) }=1, \end{aligned}$$

and hence

$$\begin{aligned} \frac{-P_{O}^{\prime }}{P_{O}}\left( c^{k}\right) \left( \beta _{I}\left( c^{k}\right) -A-c^{k}\right) =\frac{-P_{I}^{\prime }}{P_{I}}\left( c^{k}\right) \left( \beta _{I}\left( c^{k}\right) -c\right) , \end{aligned}$$

and so

$$\begin{aligned} \frac{\frac{-P_{O}^{\prime }}{P_{O}}\left( c^{k}\right) }{\frac{ -P_{I}^{\prime }}{P_{I}}\left( c^{k}\right) }=\frac{\beta _{I}\left( c^{k}\right) -c^{k}}{\beta _{I}\left( c^{k}\right) -A-c^{k}}. \end{aligned}$$

The RHS converges to at least

$$\begin{aligned} \frac{n_{I}}{n_{I}-1} \end{aligned}$$

by (22). Consider the \(LHS\). By (19) and (20) , for any \(k,\) it is given by

$$\begin{aligned} \frac{\frac{-P_{O}^{\prime }}{P_{O}}\left( c^{k}\right) }{\frac{ -P_{I}^{\prime }}{P_{I}}\left( c^{k}\right) }&= \frac{n_{I}\frac{f}{\bar{F}} \left( c^{k}\right) +\left( n_{O}-1\right) \frac{f}{\bar{F}}\left( c^{k}\right) \left( \psi \left( c^{k}\right) \right) \psi ^{\prime }\left( c^{k}\right) }{\left( n_{I}-1\right) \frac{f}{\bar{F}}\left( c^{k}\right) +n_{O}\frac{f}{\bar{F}}\left( c^{k}\right) \left( \psi \left( c^{k}\right) \right) \psi ^{\prime }\left( c^{k}\right) } \\&= \frac{n_{I}}{n_{I}-1}\frac{\frac{f}{\bar{F}}\left( c^{k}\right) +\frac{ n_{O}-1}{n_{I}}\frac{f}{\bar{F}}\left( c^{k}\right) \left( \psi \left( c^{k}\right) \right) \psi ^{\prime }\left( c^{k}\right) }{\frac{f}{\bar{F}} \left( c^{k}\right) +\frac{n_{O}}{n_{I}-1}\frac{f}{\bar{F}}\left( c^{k}\right) \left( \psi \left( c^{k}\right) \right) \psi ^{\prime }\left( c^{k}\right) }. \end{aligned}$$

But then,

$$\begin{aligned} \lim \inf \frac{\frac{f}{\bar{F}}\left( c^{k}\right) +\frac{n_{O}-1}{n_{I}} \frac{f}{\bar{F}}\left( c^{k}\right) \left( \psi \left( c^{k}\right) \right) \psi ^{\prime }\left( c^{k}\right) }{\frac{f}{\bar{F}}\left( c^{k}\right) + \frac{n_{O}}{n_{I}-1}\frac{f}{\bar{F}}\left( c^{k}\right) \left( \psi \left( c^{k}\right) \right) \psi ^{\prime }\left( c^{k}\right) }\ge 1. \end{aligned}$$
(23)

Now, note that

$$\begin{aligned} \frac{n_{O}-1}{n_{I}}<\frac{n_{O}}{n_{I}-1} \end{aligned}$$

(cross multiply), and so (23) can only hold if \(\lim \sup \psi ^{\prime }\left( c^{k}\right) =0\). But then, \(\phi ^{\prime }\left( 0\right) =\infty ,\) which completes the proof that \(\phi ^{\prime }\left( 0\right) >1\).

For the characterization of \(\phi ^{\prime }\) close to \(1-A,\) recall that by Lemma 9,

$$\begin{aligned} A+c-\phi \left( c\right) >0 \end{aligned}$$

for any \(c<1-A\). Since \(\phi \left( 1-A\right) =1,\)

$$\begin{aligned} A+1-A-\phi \left( 1-A\right) =0, \end{aligned}$$

and thus

$$\begin{aligned} A+c-\phi \left( c\right) -\left( A+1-A-\phi \left( 1-A\right) \right) >0, \end{aligned}$$

or

$$\begin{aligned} c-\left( 1-A\right) -\left( \phi \left( c\right) -\phi \left( 1-A\right) \right) >0, \end{aligned}$$

or

$$\begin{aligned} 1-\frac{\phi \left( 1-A\right) -\phi \left( c\right) }{\left( 1-A\right) -c} <0, \end{aligned}$$

which is to say

$$\begin{aligned} \frac{\phi \left( 1-A\right) -\phi \left( c\right) }{\left( 1-A\right) -c}>1. \end{aligned}$$

Since this is true for all \(c,\) it cannot be that on any interval of the form \([\hat{c},1)\,\phi ^{\prime }\left( c\right) <1\) everywhere. But then, if there is any point where \(\phi ^{\prime }<1,\) then there is a point to the right of it where \(\phi ^{\prime }\ge 1\). \(\square \)

Proof of Lemma 3

Let \(\tilde{c}\) be any point in \([0,1-A)\) with \(\phi ^{\prime }\left( \tilde{c}\right) \le 1,\) and \(\phi ^{\prime \prime }\left( \tilde{c}\right) =0\). Let

$$\begin{aligned} \tau \equiv \sup \left\{ c|\phi \left( c\right) \le \phi \left( \tilde{c} \right) +\phi ^{\prime }\left( \tilde{c}\right) \left( c-\tilde{c}\right) \right\} . \end{aligned}$$

Such a \(\tau \) exists since \(\phi \) is continuous on \([0,1-A]\), and \(\tau \in [\tilde{c},1-A)\) since \(\phi ^{\prime }\left( \tilde{c}\right) \le 1,\,\phi \left( \tilde{c}\right) <\tilde{c}+A,\) and \(\phi \left( 1-A\right) =1\). On \(\left[ \tilde{c},\tau \right] ,\,\phi ^{\prime }\) is continuously differentiable, and so reaches a minimum at some \(r\in \left[ \tilde{c},\tau \right] \). If

$$\begin{aligned} \tilde{c}\in \arg \min _{c\in \left[ \tilde{c},\tau \right] }\phi ^{\prime }\left( c\right) , \end{aligned}$$

take \(r=\tilde{c}\). Otherwise,

$$\begin{aligned} \phi ^{\prime }\left( r\right) <\phi ^{\prime }\left( \tilde{c}\right) \le \phi ^{\prime }\left( \tau \right) , \end{aligned}$$

and so \(r\) is interior. In either case, \(\phi ^{\prime \prime }\left( r\right) =0,\) and, of course,

$$\begin{aligned} \phi ^{\prime }\left( r\right) \le \phi ^{\prime }\left( \tilde{c}\right) \le 1. \end{aligned}$$

It remains to show that for \(s\ge r,\,\phi \left( s\right) \ge l\left( s\right) \). But, for \(s\in \left[ r,\tau \right] ,\)

$$\begin{aligned} \phi \left( s\right)&= \phi \left( r\right) +\int \limits _{r}^{s}\phi ^{\prime }\left( t\right) dt \\&\ge \phi \left( r\right) +\int \limits _{r}^{s}\phi ^{\prime }\left( r\right) dt \\&= \phi \left( r\right) +\phi ^{\prime }\left( r\right) \left( s-r\right) \\&= l\left( s\right) . \end{aligned}$$

So, \(\phi \left( s\right) \ge l\left( s\right) \) for all \(s\in \left[ r,\tau \right] ,\) and, in particular, \(\phi \left( \tau \right) \ge l\left( \tau \right) \). But, by construction,

$$\begin{aligned} \phi \left( \tau \right) =\phi \left( \tilde{c}\right) +\phi ^{\prime }\left( \tilde{c}\right) \left( \tau -\tilde{c}\right) , \end{aligned}$$

and hence, for all \(s\in (\tau ,1-A],\)

$$\begin{aligned} \phi \left( s\right)&> \phi \left( \tilde{c}\right) +\phi ^{\prime }\left( \tilde{c}\right) \left( s-\tilde{c}\right) \\&= \phi \left( \tilde{c}\right) +\phi ^{\prime }\left( \tilde{c}\right) \left( \tau -\tilde{c}\right) +\phi ^{\prime }\left( \tilde{c}\right) \left( s-\tau \right) \\&= \phi \left( \tau \right) +\phi ^{\prime }\left( \tilde{c}\right) \left( s-\tau \right) \\&\ge l\left( \tau \right) +\phi ^{\prime }\left( r\right) \left( s-\tau \right) \\&= l\left( s\right) . \end{aligned}$$

\(\square \)

Proof of Proposition 4

Taking logs on both sides of (9) and differentiating, we have

$$\begin{aligned} \frac{\phi ^{\prime \prime }\left( c\right) }{\phi ^{\prime }\left( c\right) }=\frac{\left( S_{I}\left( \phi \left( c\right) \right) \right) ^{\prime }}{ S_{I}\left( \phi \left( c\right) \right) }-\frac{\left( S_{O}\left( c\right) \right) ^{\prime }}{S_{O}\left( c\right) }+\frac{\partial }{\partial c}\log \frac{\bar{Q}_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{I}\left( c\right) }+\frac{\partial }{\partial c}\log \left( \frac{\frac{q_{I}\left( c\right) }{\bar{Q}_{I}\left( c\right) }}{\frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}\left( \phi \left( c\right) \right) }}\right) . \end{aligned}$$

But, using (5) and (7) ,

$$\begin{aligned} \frac{\left( S_{I}\left( \phi \left( c\right) \right) \right) ^{\prime }}{ S_{I}\left( \phi \left( c\right) \right) }-\frac{\left( S_{O}\left( c\right) \right) ^{\prime }}{S_{O}\left( c\right) }&= -\phi ^{\prime }\left( c\right) \frac{\bar{Q}_{I}\left( c\right) }{S_{I}\left( \phi \left( c\right) \right) }+\frac{\bar{Q}_{O}\left( \phi \left( c\right) \right) }{S_{O}\left( c\right) } \\&= -\phi ^{\prime }\left( c\right) \frac{\frac{q_{I}\left( c\right) }{\bar{Q} _{I}\left( c\right) }}{S_{I}\left( \phi \left( c\right) \right) \frac{ q_{I}\left( c\right) }{\bar{Q}_{I}^{2}\left( c\right) }}+\frac{\frac{ q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}\left( \phi \left( c\right) \right) }}{S_{O}\left( c\right) \frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}^{2}\left( \phi \left( c\right) \right) }} \\&= \frac{-\phi ^{\prime }\left( c\right) \frac{q_{I}\left( c\right) }{\bar{Q} _{I}\left( c\right) }+\phi ^{\prime }\left( c\right) \frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}\left( \phi \left( c\right) \right) }}{ S_{I}\left( \phi \left( c\right) \right) \frac{q_{I}\left( c\right) }{\bar{Q} _{I}^{2}\left( c\right) }}\,\hbox { using } (8)\\&\ge \frac{-\frac{q_{I}\left( c\right) }{\bar{Q}_{I}\left( c\right) }+\phi ^{\prime }\left( c\right) \frac{q_{O}\left( \phi \left( c\right) \right) }{ \bar{Q}_{O}\left( \phi \left( c\right) \right) }}{S_{I}\left( \phi \left( c\right) \right) \frac{q_{I}\left( c\right) }{\bar{Q}_{I}^{2}\left( c\right) }}\,\, (\hbox {since } \phi ^{\prime }\left( c\right) \le 1) \\&= \frac{\frac{\partial }{\partial c}\log \frac{\bar{Q}_{I}\left( c\right) }{ \bar{Q}_{O}\left( \phi \left( c\right) \right) }}{S_{I}\left( \phi \left( c\right) \right) \frac{q_{I}\left( c\right) }{\bar{Q}_{I}^{2}\left( c\right) }}. \end{aligned}$$

But then,

$$\begin{aligned} \frac{\phi ^{\prime \prime }\left( c\right) }{\phi ^{\prime }\left( c\right) }&\ge \frac{\frac{\partial }{\partial c}\log \frac{\bar{Q}_{I}\left( c\right) }{\bar{Q}_{O}\left( \phi \left( c\right) \right) }}{S_{I}\left( \phi \left( c\right) \right) \frac{q_{I}\left( c\right) }{\bar{Q} _{I}^{2}\left( c\right) }}+\frac{\partial }{\partial c}\log \frac{\bar{Q} _{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{I}\left( c\right) }+\frac{ \partial }{\partial c}\log \left( \frac{\frac{q_{I}\left( c\right) }{\bar{Q} _{I}\left( c\right) }}{\frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{ Q}_{O}\left( \phi \left( c\right) \right) }}\right) \\&= \left( \frac{1}{S_{I}\left( \phi \left( c\right) \right) \frac{ q_{I}\left( c\right) }{\bar{Q}_{I}^{2}\left( c\right) }}-1\right) \frac{ \partial }{\partial c}\log \frac{\bar{Q}_{I}\left( c\right) }{\bar{Q} _{O}\left( \phi \left( c\right) \right) }+\frac{\partial }{\partial c}\log \left( \frac{\frac{q_{I}\left( c\right) }{\bar{Q}_{I}\left( c\right) }}{ \frac{q_{O}\left( \phi \left( c\right) \right) }{\bar{Q}_{O}\left( \phi \left( c\right) \right) }}\right) . \end{aligned}$$

The result then follows by (11). \(\square \)

Proof of Lemma 5

Note first that

$$\begin{aligned} S_{O}\left( \phi \left( r\right) \right)&= \int \limits _{r}^{1-A}\bar{F} ^{n_{I}}\left( \phi \left( s\right) \right) \bar{F}^{n_{O}-1}\left( s\right) ds \nonumber \\&< \int \limits _{r}^{1-A}\bar{F}^{n_{I}}\left( l\left( s\right) \right) \bar{F}^{n_{O}-1}\left( s\right) ds \nonumber \\&= \int \limits _{r}^{1-A}K\left( s\right) ds \nonumber \\&\le \int \limits _{r}^{1}K\left( s\right) ds. \end{aligned}$$
(24)

where \(K\left( s\right) \equiv 0\) if \(l\left( s\right) >1,\) and where the inequality is strict since \(\phi \left( s\right) >l\left( s\right) \) on \( \left[ \tau ,1-A\right] \).

Now, since \(\bar{Q}_{O}\left( \phi \left( s\right) \right) =\bar{F} ^{n_{I}}\left( \phi \left( s\right) \right) \bar{F}^{n_{O}-1}\left( s\right) ,\) and since \(l\left( r\right) =\phi \left( r\right) , \,\bar{Q}_{O}\left( \phi \left( r\right) \right) =K\left( r\right) \). Further,

$$\begin{aligned} \bar{Q}_{O}^{\prime }\left( \phi \left( s\right) \right) \phi ^{\prime }\left( s\right) =\left[ \bar{F}^{n_{I}}\left( \phi \left( s\right) \right) \bar{F}^{n_{O}-1}\left( s\right) \right] _{s}, \end{aligned}$$

and so, since \(l^{\prime }\left( r\right) =\phi ^{\prime }\left( r\right) ,\)

$$\begin{aligned} \bar{Q}_{O}^{\prime }\left( \phi \left( r\right) \right) \phi ^{\prime }\left( r\right) =K^{\prime }\left( r\right) \end{aligned}$$

and thus

$$\begin{aligned} q_{O}\left( \phi \left( r\right) \right) =\frac{-K^{\prime }\left( r\right) }{\phi ^{\prime }\left( r\right) } \end{aligned}$$

using that \(\phi ^{\prime \prime }\left( r\right) =0\). Thus,

$$\begin{aligned} S_{O}\left( \phi \left( r\right) \right) \frac{q_{O}\left( \phi \left( r\right) \right) }{\bar{Q}_{O}^{2}\left( \phi \left( r\right) \right) }&< \frac{1}{\phi ^{\prime }\left( r\right) }\int \limits _{r}^{1}K\left( s\right) ds \frac{-K^{\prime }(r)}{\left[ K\left( r\right) \right] ^{2}} \\&= \frac{1}{\phi ^{\prime }\left( r\right) }\left( 1-\rho _{\int K\left( s\right) }\left( r\right) \right) , \end{aligned}$$

and we are done since by (8),

$$\begin{aligned} S_{I}\left( \phi \left( r\right) \right) \frac{q_{I}\left( r\right) }{\bar{Q} _{I}^{2}\left( r\right) }=\phi ^{\prime }\left( r\right) S_{O}\left( \phi \left( r\right) \right) \frac{q_{O}\left( \phi \left( r\right) \right) }{ \bar{Q}_{O}^{2}\left( \phi \left( r\right) \right) }. \end{aligned}$$

\(\square \)

Proof of Lemma 6

We begin with a technical result. \(\square \)

Lemma 10

Let \(t\ge 1\). Then,

$$\begin{aligned} \frac{1}{\frac{n_{O}}{n_{I}-1}\frac{1}{t}+1}- \frac{1}{\frac{n_{O}-1}{n_{I}} \frac{1}{t}+1}>\frac{-1}{n-1}. \end{aligned}$$

Proof

Since

$$\begin{aligned} \frac{-1}{n-1}=\frac{1}{\frac{n_{O}}{n_{I}-1}+1}- \frac{1}{\frac{n_{O}-1}{ n_{I}}+1} \end{aligned}$$

it would be enough to show that

$$\begin{aligned} Y\left( t\right) =\frac{1}{\frac{n_{O}}{n_{I}-1}\frac{1}{t}+1}-\frac{1}{ \frac{n_{O}-1}{n_{I}}\frac{1}{t}+1} \end{aligned}$$

is increasing in \(t\).

But,

$$\begin{aligned} Y^{\prime }\left( t\right) =\frac{-\frac{n_{O}}{n_{I}-1}\left( \frac{-1}{t^{2}}\right) }{\left( \frac{n_{O}}{n_{I}-1}\frac{1}{t}+1\right) ^{2}}-\frac{-\frac{n_{O}-1}{n_{I}}\left( \frac{-1}{t^{2}}\right) }{\left( \frac{n_{O}-1}{n_{I}}\frac{1}{t}+1\right) ^{2}} \end{aligned}$$

which has the same sign as

$$\begin{aligned} \frac{\frac{n_{O}}{n_{I}-1}}{\left( \frac{n_{O}}{n_{I}-1}\frac{1}{t} +1\right) ^{2}}-\frac{\frac{n_{O}-1}{n_{I}}}{\left( \frac{n_{O}-1}{n_{I}} \frac{1}{t}+1\right) ^{2}}. \end{aligned}$$

Cross multiplying, we have that the sign of \(Y^{\prime }\left( t\right) \) is the same as that of

$$\begin{aligned} \frac{n_{O}}{n_{I}-1}\left( \frac{n_{O}-1}{n_{I}t}+1\right) ^{2}-\frac{ n_{O}-1}{n_{I}}\left( \frac{n_{O}}{\left( n_{I}-1\right) t}+1\right) ^{2} \end{aligned}$$

which in turn, after bringing everything to the same denominator, is the same as that of

$$\begin{aligned} \left( n_{O}-1+n_{I}t\right) ^{2}-\frac{n_{I}}{n_{I}-1}\frac{n_{O}-1}{n_{O}} \left( n_{O}+\left( n_{I}-1\right) t\right) ^{2}. \end{aligned}$$

So, since \(n_{O}\le n_{I},\,Y^{\prime }\left( t\right) \) is positive whenever

$$\begin{aligned} \left( n_{O}-1+n_{I}t\right) ^{2}-\left( n_{O}+\left( n_{I}-1\right) t\right) ^{2} \end{aligned}$$

is non-negative. Observe that since the last expression is a difference of squares, and since \(t\ge 1,\) it has the same sign as

$$\begin{aligned} Y^{\prime }\left( t\right) \underset{s}{\ge }\left[ t-1\right] \left[ \left( n_{O}-1+n_{I}t\right) +\left( n_{O}+\left( n_{I}-1\right) t\right) \right] \ge 0. \end{aligned}$$

We thus conclude that \(Y^{\prime }\left( t\right) \ge 0\).

This in hand, note that by Lemma 3, and since \(\phi ^{\prime \prime }\left( r\right) =0,\)

$$\begin{aligned} \frac{\partial }{\partial r}\log \left( \frac{\frac{q_{I}\left( r\right) }{ \bar{Q}_{I}\left( r\right) }}{\frac{q_{O}\left( \phi \left( r\right) \right) }{\bar{Q}_{O}\left( \phi \left( r\right) \right) }}\right)&= \frac{\partial }{\partial r}\log \left( \phi ^{\prime }\left( r\right) T\left( r\right) \right) \\&= \frac{\partial }{\partial r}\log \left( \frac{n_{O}\frac{f}{\bar{F}} \left( r\right) +\left( n_{I}-1\right) \phi ^{\prime }\left( r\right) \frac{f }{\bar{F}}\left( \phi \left( r\right) \right) }{\left( n_{O}-1\right) \frac{f }{\bar{F}}\left( r\right) +n_{I}\phi ^{\prime }\left( r\right) \frac{f}{\bar{ F}}\left( \phi \left( r\right) \right) }\right) \\&= \frac{\partial }{\partial r}\log \left( \frac{n_{O}+\left( n_{I}-1\right) \phi ^{\prime }\left( r\right) \frac{\frac{f}{\bar{F}}\left( \phi \left( r\right) \right) }{\frac{f}{\bar{F}}\left( r\right) }}{\left( n_{O}-1\right) +n_{I}\phi ^{\prime }\left( r\right) \frac{\frac{f}{\bar{F}}\left( \phi \left( r\right) \right) }{\frac{f}{\bar{F}}\left( r\right) }}\right) \\&= \frac{\partial }{\partial r}\log \left( \frac{n_{O}+\left( n_{I}-1\right) D\left( r\right) }{\left( n_{O}-1\right) +n_{I}D\left( r\right) }\right) , \end{aligned}$$

where

$$\begin{aligned} D\left( r\right) \equiv \phi ^{\prime }\left( r\right) \frac{\bar{F}\left( r\right) }{\bar{F}\left( \phi \left( r\right) \right) }\frac{f\left( \phi \left( r\right) \right) }{f\left( r\right) }>1 \end{aligned}$$

by Corollary 2. Thus,

$$\begin{aligned} \frac{\partial }{\partial r}\log \left( \frac{\frac{q_{I}\left( r\right) }{ \bar{Q}_{I}\left( r\right) }}{\frac{q_{O}\left( \phi \left( r\right) \right) }{\bar{Q}_{O}\left( \phi \left( r\right) \right) }}\right)&= \frac{\left( n_{I}-1\right) D^{\prime }\left( r\right) }{n_{O}+\left( n_{I}-1\right) D\left( r\right) }-\frac{n_{I}D^{\prime }\left( r\right) }{\left( n_{O}-1\right) +n_{I}D\left( r\right) } \\&= \left( \frac{1}{\frac{n_{O}}{\left( n_{I}-1\right) D\left( r\right) }+1}- \frac{1}{\frac{n_{O}-1}{n_{I}D\left( r\right) }+1}\right) \frac{D^{\prime }\left( r\right) }{D\left( r\right) }\,\,(\hbox {using }n_{I}>1) \\&\ge -\frac{1}{n-1}\frac{D^{\prime }\left( r\right) }{D\left( r\right) }, \end{aligned}$$

by Lemma 10. But, since \(\phi ^{\prime \prime }\left( r\right) =0,\) we are done, as

$$\begin{aligned} \frac{D^{\prime }\left( r\right) }{D\left( r\right) }=\frac{\partial }{ \partial r}\log \frac{\bar{F}\left( r\right) }{\bar{F}\left( \phi \left( r\right) \right) }+\frac{\partial }{\partial r}\log \frac{f\left( \phi \left( r\right) \right) }{f\left( r\right) }. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mares, V., Swinkels, J.M. Comparing first and second price auctions with asymmetric bidders. Int J Game Theory 43, 487–514 (2014). https://doi.org/10.1007/s00182-013-0392-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-013-0392-8

Keywords

Navigation