Skip to main content

Advertisement

Log in

Analysis of high strength characteristics of aluminized quenchable boron steel (22MnB5) using groove pattern on the hot stamping die surface

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The increasing demand for lightweight vehicles, while ensuring collision safety, has led to the growing utilization of high-strength steel sheets. Accordingly, the hot stamping process, which involves heating the material and shaping it in a die while simultaneously cooling it, has gained significant attention. However, the inclusion of heating and cooling processes in the hot stamping engineering presents competitive disadvantages in terms of cost. As a result, numerous studies are being carried out to overcome these challenges and improve productivity. In particular, the sidewall areas of the vehicle body parts, which thin out during the stamping process, can experience a reduced cooling rate compared to other areas. To counteract the potential risk of a relative decrease in strength in these areas, extending the pressurization time of the press becomes necessary. In this study, by introducing groove patterns on the surface of the die used in the hot stamping forming and cooling processes, it was investigated how to enhance the cooling rate of the sidewall of the vehicle part without necessitating additional press dwell time. Using this approach, it was possible to achieve a strength of over 1.6 GPa and a dimensional accuracy of -0.06 mm within a short in-die quenching time of 6 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Merklein M, Lechler J, Stoehr T (2009) Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping. Int J Mater Form 2:259–262. https://doi.org/10.1007/s12289-009-0505-x

    Article  Google Scholar 

  2. Merklein M, Lechler J, Geiger M (2006) Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5. CIRP Ann 55:229–232. https://doi.org/10.1016/s0007-8506(07)60404-1

    Article  Google Scholar 

  3. Li X, Nam K-M (2022) Environmental regulations as industrial policy: vehicle emission standards and automotive industry performance. Environ Sci Policy 131:68–83. https://doi.org/10.1016/j.envsci.2022.01.015

    Article  Google Scholar 

  4. Ravina M, Bianco I, Ruffino B et al (2023) Hard-to-recycle plastics in the automotive sector: Economic, environmental and technical analyses of possible actions. J Clean Prod 394:136227. https://doi.org/10.1016/j.jclepro.2023.136227

    Article  Google Scholar 

  5. Kumar S, Singhai M, Desai R et al (2015) Development of advanced high strength steel for improved vehicle safety, fuel efficiency and CO2 emission. J Inst Eng India Ser D 97:153–158. https://doi.org/10.1007/s40033-015-0100-x

    Article  Google Scholar 

  6. Chang Y, Meng Z, Ying L et al (2011) Influence of hot press forming techniques on properties of vehicle high strength steels. J Iron Steel Res Int 18:59–63. https://doi.org/10.1016/s1006-706x(11)60066-6

    Article  Google Scholar 

  7. Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Springback prediction in sheet metal forming of high strength steels. Mater Des 50:253–266. https://doi.org/10.1016/j.matdes.2013.02.060

    Article  Google Scholar 

  8. Mertin C, Stellmacher T, Schmitz R, Hirt G (2019) Enhanced springback prediction for bending of high-strength spring steel using material data from an inverse modelling approach. Procedia Manuf 29:153–160. https://doi.org/10.1016/j.promfg.2019.02.120

    Article  Google Scholar 

  9. Yang F, Veljkovic M, Liu Y (2020) Ductile damage model calibration for high-strength structural steels. Constr Build Mater 263:120632. https://doi.org/10.1016/j.conbuildmat.2020.120632

    Article  Google Scholar 

  10. Yan R, Xin H, Veljkovic M (2021) Ductile fracture simulation of cold-formed high strength steel using GTN damage model. J Constr Steel Res 184:106832. https://doi.org/10.1016/j.jcsr.2021.106832

    Article  Google Scholar 

  11. Li H, Wu X, Li G, Zhou D (2020) Chipping damage of die for trimming advanced high-strength steel sheet: evaluation and analysis. J Mater Process Technol 285:116787. https://doi.org/10.1016/j.jmatprotec.2020.116787

    Article  Google Scholar 

  12. Zhang W, Xu X, Liu Y et al (2021) High-strength cold-formed steel framed shear wall with steel sheet sheathing. Thin-Walled Struct 162:107584. https://doi.org/10.1016/j.tws.2021.107584

    Article  Google Scholar 

  13. Abe Y, Ohmi T, Mori K, Masuda T (2014) Improvement of formability in deep drawing of ultra-high strength steel sheets by coating of die. J Mater Process Technol 214:1838–1843. https://doi.org/10.1016/j.jmatprotec.2014.03.023

    Article  Google Scholar 

  14. Kharchenko V, Katok O, Sereda A et al (2022) Determination of strength characteristics of high-strength sheet steels by hardness and instrumented indentation. Procedia Struct Integr 36:277–283. https://doi.org/10.1016/j.prostr.2022.01.035

    Article  Google Scholar 

  15. Ahn K, Jeong Y, Yoon J (2019) Thermo-mechanical constitutive equation of 22MnB5 steel sheet for hot press forming process. Int J Precis Eng Manuf 20:663–672. https://doi.org/10.1007/s12541-019-00033-z

    Article  Google Scholar 

  16. Yoon SC, Kim DH (2013) Analysis of phase transformation and temperature history during hot stamping using the finite element method. Trans Mater Process 22:123–132. https://doi.org/10.5228/kstp.2013.22.3.123

    Article  Google Scholar 

  17. Kim HY, Park JK, Lee M-G (2013) Phase transformation-based finite element modeling to predict strength and deformation of press-hardened tubular automotive part. Int J Adv Manuf Technol 70:1787–1801. https://doi.org/10.1007/s00170-013-5424-9

    Article  Google Scholar 

  18. Pan H, Wei C, Yu W et al (2022) Achieving excellent strength–ductility combination by cyclic quenching treatment in 22MnB5 steel. J Mater Eng Perform 31:6659–6663. https://doi.org/10.1007/s11665-022-06737-0

    Article  Google Scholar 

  19. Deng L, Mozgovoy S, Hardell J et al (2016) Numerical Study of contact conditions in press hardening for tool wear simulation. Int J Mater Form 10:717–727. https://doi.org/10.1007/s12289-016-1314-7

    Article  Google Scholar 

  20. Lim W-S, Choi H-S, Ahn S, Kim B-M (2013) Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process. Int J Adv Manuf Technol 70:1189–1203. https://doi.org/10.1007/s00170-013-5331-0

    Article  Google Scholar 

  21. Ganapathy M, Li N, Lin J, Bhattacharjee D (2017) Investigation of a new hot stamping process with improved formability and productivity. Procedia Eng 207:771–776. https://doi.org/10.1016/j.proeng.2017.10.827

    Article  Google Scholar 

  22. Ou H, Zhang X, Xu J et al (2018) Mechanical properties and microstructure of high-strength steel controlled by hot stamping process. J Mater Eng Perform 27:4025–4035. https://doi.org/10.1007/s11665-018-3290-1

    Article  Google Scholar 

  23. Ganapathy M, Li N, Lin J et al (2019) Experimental investigation of a new low-temperature hot stamping process for boron steels. Int J Adv Manuf Technol 105:669–682. https://doi.org/10.1007/s00170-019-04172-5

    Article  Google Scholar 

  24. Abdollahpoor A, Chen X, Pereira MP et al (2016) Sensitivity of the final properties of tailored hot stamping components to the process and material parameters. J Mater Process Technol 228:125–136. https://doi.org/10.1016/j.jmatprotec.2014.11.033

    Article  Google Scholar 

  25. Lee I-K, Lee S-Y, Kim B-M, Lee S-K (2017) Development of concurrent stamping-piercing trimless hot stamping process. J Mech Sci Technol 31:1885–1891. https://doi.org/10.1007/s12206-017-0336-5

    Article  Google Scholar 

  26. Zhang P, Zhu L, Luo S, Luo J (2019) Hot stamping forming and finite element simulation of USIBOR1500 high-strength steel. Int J Adv Manuf Technol 103:3187–3197. https://doi.org/10.1007/s00170-019-03727-w

    Article  Google Scholar 

  27. Vlasov AV (2016) Thermomechanical fatigue of dies for hot stamping. Steel Transl 46:356–360. https://doi.org/10.3103/s0967091216050156

    Article  Google Scholar 

  28. Yun S, Kwon J, Cho W et al (2020) Performance improvement of hot stamping die for patchwork blank using mixed cooling channel designs with straight and conformal channels. Appl Therm Eng 165:114562. https://doi.org/10.1016/j.applthermaleng.2019.114562

    Article  Google Scholar 

  29. Neugebauer R, Altan T, Geiger M et al (2006) Sheet metal forming at elevated temperatures. CIRP Ann 55:793–816. https://doi.org/10.1016/j.cirp.2006.10.008

    Article  Google Scholar 

  30. Muvunzi R, Hagedorn-Hansen D, Matope S et al (2020) Industry case study: process chain for manufacturing of a large hybrid hot stamping tool with conformal cooling channels. Int J Adv Manuf Technol 110:1723–1730. https://doi.org/10.1007/s00170-020-05992-6

    Article  Google Scholar 

  31. Chen L, Chen W, Xu F et al (2019) A pre-design method for drilled cooling pipes in hot stamping tool based on pipe parameter window. Int J Adv Manuf Technol 103:891–900. https://doi.org/10.1007/s00170-019-03587-4

    Article  Google Scholar 

  32. Maeno T, Mori K-I, Fujimoto M (2015) Improvements in productivity and formability by water and die quenching in hot stamping of ultra-high strength steel parts. CIRP Ann 64:281–284. https://doi.org/10.1016/j.cirp.2015.04.128

    Article  Google Scholar 

  33. Narayanasamy PS, Singh AK, Narasimhan K (2020) Effect of cooling system in hot stamping process. IOP Conf Ser: Mater Sci Eng 967:012059. https://doi.org/10.1088/1757-899x/967/1/012059

    Article  Google Scholar 

  34. Ota E, Yogo Y, Iwata N, Nishigaki H (2019) CAE-based process design for improving formability in hot stamping with partial cooling. J Mater Process Technol 263:198–206. https://doi.org/10.1016/j.jmatprotec.2018.08.021

    Article  Google Scholar 

  35. Park JM, Park KJ, Kong JY et al (2023) Development of rapid die cooling technology using the groove pressing method in hot stamping process. IOP Conf Ser: Mater Sci Eng 1284:012011. https://doi.org/10.1088/1757-899X/1284/1/012011

    Article  Google Scholar 

  36. Gu Z, Lü M, Lu G et al (2015) Effect of contact pressure during quenching on microstructures and mechanical properties of hot-stamping parts. J Iron Steel Res Int 22:1138–1143. https://doi.org/10.1016/s1006-706x(15)30124-2

    Article  Google Scholar 

  37. Wang M, Zhang C, Xiao H, Li B (2016) Inverse evaluation of equivalent contact heat transfer coefficient in hot stamping of boron steel. Int J Adv Manuf Technol 87:2925–2932. https://doi.org/10.1007/s00170-016-8678-1

    Article  Google Scholar 

  38. Fan X, He Z, Zhou W, Yuan S (2016) Formability and strengthening mechanism of solution treated Al–Mg–Si alloy sheet under hot stamping conditions. J Mater Process Technol 228:179–185. https://doi.org/10.1016/j.jmatprotec.2015.10.016

    Article  Google Scholar 

  39. Wen S, Chen Z, Qu S et al (2022) Investigations on the interfacial heat transfer coefficient during hot stamping of ultra-high strength steel with Al-Si coating. Int J Heat Mass Transf 189:122739. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122739

    Article  Google Scholar 

  40. Markham SK, Mani A, Korsakova EA et al (2020) Polarisation changes in guided infrared thermography using silver halide poly-crystalline mid-infrared fibre bundle. J Therm Anal Calorim 142:1115–1122. https://doi.org/10.1007/s10973-020-10018-0

    Article  Google Scholar 

  41. Standard test methods for tension testing of metallic materials [metric] In: E8M. https://www.astm.org/e0008m-00a.html

  42. Zheng Q, Aoyama T, Shimizu T, Yang M (2014) Experimental and numerical analysis of springback behavior under elevated temperatures in micro bending assisted by resistance heating. Procedia Eng 81:1481–1486. https://doi.org/10.1016/j.proeng.2014.10.177

    Article  Google Scholar 

  43. Löbbe C, Hoppe C, Becker C, Tekkaya AE (2015) Closed loop springback control in progressive die bending by induction heating. Int J Precis Eng Manuf 16:2441–2449. https://doi.org/10.1007/s12541-015-0314-8

    Article  Google Scholar 

  44. Oldenburg M, Hardell J, Casellas D (2019) Hot sheet metal forming of high-performance steel, CHS2 7th international conference: 2019, Luleå, Sweden: Proceedings. Verlag Wissenschaftliche Scripten, Auerbach/Vogtl

  45. Inal K, Levesque J, Worswick M, Butcher C (2023) NUMISHEET 2022: Proceedings of the 12th international conference and workshop on numerical simulation of 3D sheet metal forming processes. Springer, Cham

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jea Myoung Park: Writing – Original Draft, Formal analysis, Conceptualization. Je Youl Kong: Methodology, Investigation. Kye Jeong Park: Investigation, Formal analysis. Jin Ho Rhee: Investigation, Data Curation. Seung Chae Yoon: Writing – Review & Editing, Methodology, Supervision. Joo Sik Hyun: Investigation. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Seung Chae Yoon.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.M., Kong, J.Y., Park, K.J. et al. Analysis of high strength characteristics of aluminized quenchable boron steel (22MnB5) using groove pattern on the hot stamping die surface. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13650-4

Keywords

Navigation