Skip to main content
Log in

Constitutive analysis of hot metal flow behavior of virgin and rejuvenated heat treatment creep exhausted power plant X20 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents constitutive equations that describe the hot flow behaviour of Virgin (VG) X20 and rejuvenated heat-treated creep exhaust (CE) X20 steels. The study provides a foundation for determining the effect of rejuvenation heat treatment on CE steels by making comparisons to the VG steel. Hot compression tests were conducted in the temperature range of 900 °C to 1050 °C, at strain rates of 0.1–10 s−1 to a total strain of 0.6, and stress–strain curves were obtained. The flow stress curves of both steels exhibited dynamic recovery (DRV) characteristics as the main softening mechanism. Constitutive constants of steady-state stresses were determined. The stress exponents, n, were 6.62 (VG) and 5.58 (CE), and the apparent activation energy values were 380.36 kJmol−1(VG) and 435.70 kJmol−1 (CE). Analysis of the activation energies showed that VG steel had better workability properties than CE steel and was easier to deform at high temperatures. Constitutive equations for predicting the flow stress in the two steels were established. This were verified by statistical tools: Pearson’s correlation coefficient (R) and Absolute Average Relative Error (AARE). The results showed R-values were, 0.98 (VG) and 0.99 (CE), and the AARE values for VG were 4.17% and 9.01% for CE. The statistical parameters indicated a good correlation between the experimental and predicted values. The constitutive equations therefore adequately described the flow stress behaviour of both steels and can therefore efficiently analyse industrial metal forming schedules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Skobir DA, Godec M, Jenko M, Markoli B (2008) Characterization of the carbides in the steel X20CrMoV12.1 used in thermal power plants. Surf Interface Anal 40(3–4):513–517. https://doi.org/10.1002/sia.2759

    Article  Google Scholar 

  2. Pandey C, Mahapatra MM, Kumar P, Saini N (2018) Some studies on P91 steel and their weldments. J Alloys Compd 743:332–364. https://doi.org/10.1016/j.jallcom.2018.01.120

    Article  Google Scholar 

  3. Bakic G, Zeravcic V, Djukic MB, Perunicic N (2014) Material characterization of the main steam gate valve made of X20CrMoV 12.1 steel after long term service. Procedia Mater Sci 3:1512–1517. https://doi.org/10.1016/j.mspro.2014.06.244

    Article  Google Scholar 

  4. Hald J (2008) Microstructure and long-term creep properties of 9–12% Cr steels. Int J Press Vessel Pip 85(1–2):30–37. https://doi.org/10.1016/j.ijpvp.2007.06.010

    Article  Google Scholar 

  5. Brózda J, Zeman M (2003) Wrong heat treatment of martensitic steel welded tubes caused major cracking during assembly of resuperheaters in a fossil fuel power plant. Eng Fail Anal 10(5):569–579. https://doi.org/10.1016/S1350-6307(03)00039-6

    Article  Google Scholar 

  6. Salifu S, Desai D, Kok S (2021) Numerical simulation and creep-life prediction of X20 steam piping. Mater Today Proc 38(xxxx):893–898. https://doi.org/10.1016/j.matpr.2020.05.125

    Article  Google Scholar 

  7. Barraclough DR, Gooch DJ (1985) Effect of inadequate heat treatment on creep strength of 12Cr–Mo–V steel. Mater Sci Technol (United Kingdom) 1(11):961–967. https://doi.org/10.1179/mst.1985.1.11.961

    Article  Google Scholar 

  8. Danielsen HK, Hald J (2006) Behaviour of z phase in 9–12%Cr steels. Energy Mater Mater Sci Eng Energy Syst 1(1):49–57. https://doi.org/10.1179/174892306X99732

    Article  Google Scholar 

  9. Danielsen HK (2016) Review of Z phase precipitation in 9–12 wt-%Cr steels. Mater Sci Technol (United Kingdom) 32(2):126–137. https://doi.org/10.1179/1743284715Y.0000000066

    Article  Google Scholar 

  10. Hu ZF, Yang ZG (2003) Identification of the precipitates by TEM and EDS in X20CrMoV12.1 after long-term service at elevated temperature. J Mater Eng Perform 12(1):106–111. https://doi.org/10.1361/105994903770343556

    Article  Google Scholar 

  11. Hald J (1996) Metallurgy and creep properties of new 9–12%Cr steels. Steel Res 67(9):369–374. https://doi.org/10.1002/srin.199605503

    Article  Google Scholar 

  12. Yan W, Wang W, Shan YY, Yang K (2013) Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels. Front Mater Sci 7(1):1–27. https://doi.org/10.1007/s11706-013-0189-5

    Article  Google Scholar 

  13. Danielsen HK, Hald J (2009) On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12%Cr steels. Mater Sci Eng A 505(1–2):169–177. https://doi.org/10.1016/j.msea.2008.11.019

    Article  Google Scholar 

  14. Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ (2010) Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Mater 58(2):669–679. https://doi.org/10.1016/j.actamat.2009.09.045

    Article  Google Scholar 

  15. Cipolla L, Danielsen HK, Di Nunzio PE, Venditti D, Hald J, Somers MAJ (2010) On the role of Nb in Z-phase formation in a 12% Cr steel. Scr Mater 63(3):324–327. https://doi.org/10.1016/j.scriptamat.2010.04.025

    Article  Google Scholar 

  16. Baldan A (1991) Rejuvenation procedures to recover creep properties of nickel-base superalloys by heat treatment and hot isostatic pressing techniques - A review. J Mater Sci 26(13):3409–3421. https://doi.org/10.1007/BF00557126

    Article  Google Scholar 

  17. Lin S, Shen H, Zhou G, He W, Chen K (2022) A new rejuvenation heat treatment of crept Ni-based superalloy single crystals. IOP Conf Ser Mater Sci Eng 1249(1):012017. https://doi.org/10.1088/1757-899x/1249/1/012017

    Article  Google Scholar 

  18. Falat L, Čiripová L, Homolová V, Džupon M, Džunda R, Koval K (2021)The effects of various conditions of short-term rejuvenation heat treatment on room-temperature mechanical properties of thermally aged P92 boiler steel. Materials (Basel) 14(20). https://doi.org/10.3390/ma14206076

  19. Thomson RC, Bhadeshia HKDH (1992) Carbide precipitation in 12Cr1MoV power plant steel. Metall Trans A 23(4):1171–1179. https://doi.org/10.1007/BF02665048

    Article  Google Scholar 

  20. Pandey C, Mahapatra MM, Kumar P, Saini N (2018) Homogenization of P91 weldments using varying normalizing and tempering treatment. Mater Sci Eng A 710(June 2017):86–101. https://doi.org/10.1016/j.msea.2017.10.086

    Article  Google Scholar 

  21. Obiko J (2021) Friction correction of flow stress-strain curve in the upsetting process. IOP SciNotes 2(1):014401. https://doi.org/10.1088/2633-1357/abdd96

    Article  Google Scholar 

  22. Li J et al (2022) Research on hot deformation behavior of F92 steel based on stress correction. Metals (Basel) 12(5):1–14. https://doi.org/10.3390/met12050698

    Article  MathSciNet  Google Scholar 

  23. Evans RW, Scharning PJ (2001) Axisymmetric compression test and hot working properties of alloys. Mater Sci Technol 17(8):995–1004. https://doi.org/10.1179/026708301101510843

    Article  Google Scholar 

  24. Li Y, Onodera E, Chiba A (2010) Friction coefficient in hot compression of cylindrical sample. Mater Trans 51(7):1210–1215. https://doi.org/10.2320/matertrans.M2010056

    Article  Google Scholar 

  25. Prasad YVRK, Rao KP (2008) Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability. Mater Sci Eng A 487(1–2):316–327. https://doi.org/10.1016/j.msea.2007.10.038

    Article  Google Scholar 

  26. Xiao ZB, Huang YC, Liu Y (2016) Modeling of flow stress of 2026 Al alloy under hot compression. Adv Mater Sci Eng 2016:28–32. https://doi.org/10.1155/2016/3803472

    Article  Google Scholar 

  27. Taylor AS, Hodgson PD (2011) Dynamic behaviour of 304 stainless steel during high Z deformation. Mater Sci Eng A 528(9):3310–3320. https://doi.org/10.1016/j.msea.2010.12.093

    Article  Google Scholar 

  28. Ghosh S, Somani MC, Setman D, Mula S (2021) Hot deformation characteristic and strain dependent constitutive flow stress modelling of Ti + Nb stabilized interstitial free steel. Met Mater Int 27(8):2481–2498. https://doi.org/10.1007/s12540-020-00827-1

    Article  Google Scholar 

  29. Obiko J, Chown L, Whitefield D, Bodunrin M (2022) Metal flow behaviour and processing maps of high heat resistant steel during hot compression. Int J Adv Manuf Technol 121(5–6):4153–4167. https://doi.org/10.1007/s00170-022-09577-3

    Article  Google Scholar 

  30. Wang L, Liu F, Zuo Q, Chen CF (2013) Prediction of flow stress for N08028 alloy under hot working conditions. Mater Des 47:737–745. https://doi.org/10.1016/j.matdes.2012.12.074

    Article  Google Scholar 

  31. Obiko J, Chown L, Whitefield D, Bodunrin M (2022) Understanding hot workability of power plant P92 creep resistant steels using dynamic material modelling (DMM) and microstructural evolution. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-022-01084-9

    Article  Google Scholar 

  32. Obiko J, Chown LH, Whitefield DJ (2019) Warm deformation behaviour of P92 steel. Mater Res Express 6(12). https://doi.org/10.1088/2053-1591/ab5e9c

  33. Ge G, Zhang L, Xin J, Lin J, Aindow M, Zhang L (2018) Constitutive modeling of high temperature flow behavior in a Ti-45Al-8Nb-2Cr-2Mn-0.2Y alloy. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-23617-7

  34. Cai Z, Ji H, Pei W, Wang B, Huang X, Li Y (2019) Constitutive equation and model validation for 33Cr23Ni8Mn3N heat-resistant steel during hot compression. Results Phys. 15(July):102633. https://doi.org/10.1016/j.rinp.2019.102633

    Article  Google Scholar 

  35. Jia L, Li Y, Zhang Y (2017) A Characterization for the deformation behavior of As-Cast P91 alloy steel and utilization in hot extrusion process. Adv Mater Sci Eng 2017. https://doi.org/10.1155/2017/6582739

  36. Kumar N, Kumar S, Rajput SK, Nath SK (2017) Modelling of flow stress and prediction of workability by processing map for hot compression of 43CrNi steel. ISIJ Int 57(3):497–505. https://doi.org/10.2355/isijinternational.ISIJINT-2016-306

    Article  Google Scholar 

  37. Nayan N et al (2021) Hot workability and microstructure control in Monel®400 (Ni–30Cu) alloy: An approach using processing map, constitutive equation and deformation modeling. Mater Sci Eng A 825(July):141855. https://doi.org/10.1016/j.msea.2021.141855

    Article  Google Scholar 

  38. Mirzadeh H, Cabrera JM, Najafizadeh A (2011) Constitutive relationships for hot deformation of austenite. Acta Mater 59(16):6441–6448. https://doi.org/10.1016/j.actamat.2011.07.008

    Article  Google Scholar 

  39. Laasraoui A, Jonas JJ (1991) Prediction of steel flow stresses at high temperatures and strain rates. Metall Trans A 22(7):1545–1558. https://doi.org/10.1007/BF02667368

    Article  Google Scholar 

  40. Oudin A, Barnett MR, Hodgson PD (2004) Grain size effect on the warm deformation behaviour of a Ti-IF steel. Mater Sci Eng A 367(1–2):282–294. https://doi.org/10.1016/j.msea.2003.10.273

    Article  Google Scholar 

  41. Alaneme KK, Babalola SA, Bodunrin MO (2021) On the prediction of hot deformation mechanisms and workability in Al6063/Nip and Al6063/steelp composites using hyperbolic-sine constitutive equation. Mater Today Proc 38(10):942–948. https://doi.org/10.1016/j.matpr.2020.05.463

    Article  Google Scholar 

  42. Bodunrin MO (2020) Flow stress prediction using hyperbolic-sine Arrhenius constants optimised by simple generalised reduced gradient refinement. J Mater Res Technol 9(2):2376–2386. https://doi.org/10.1016/j.jmrt.2019.12.070

    Article  Google Scholar 

  43. McQueen HJ, Ryan ND (2002) Constitutive analysis in hot working. Mater Sci Eng A 322(1–2):43–63. https://doi.org/10.1016/S0921-5093(01)01117-0

    Article  Google Scholar 

  44. Zhou DQ, Xu XQ, Mao HH, Yan YF, Nieh TG, Lu ZP (2014) Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures. Mater Sci Eng A 594:246–252. https://doi.org/10.1016/j.msea.2013.11.021

    Article  Google Scholar 

  45. Mirzadeh H (2015) Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys. Trans Nonferrous Met Soc China (English Ed. 25(5):1614–1618. https://doi.org/10.1016/S1003-6326(15)63765-7

    Article  Google Scholar 

  46. Carsí M, Peñalba F, Rieiro I, Ruano OA (2011) High temperature workability behavior of a modified P92 steel. Int J Mater Res 102(11):1378–1383. https://doi.org/10.3139/146.110603

    Article  Google Scholar 

  47. El Wahabi M, Cabrera JM, Prado JM (2003) Hot working of two AISI 304 steels: A comparative study. Mater Sci Eng A 343(1–2):116–125. https://doi.org/10.1016/S0921-5093(02)00357-X

    Article  Google Scholar 

  48. Wang S, Luo JR, Hou LG, Zhang JS, Zhuang LZ (2017) Identification of the threshold stress and true activation energy for characterizing the deformation mechanisms during hot working. Mater Des 113:27–36. https://doi.org/10.1016/j.matdes.2016.10.018

    Article  Google Scholar 

  49. Baktash R, Mirzadeh H (2016) A simple constitutive model for prediction of single-peak flow curves under hot working conditions. J Eng Mater Technol Trans ASME 138(2). https://doi.org/10.1115/1.4032153

  50. Mwema FM, Obiko JO, Mahamood RM, Adediran AA, Bodunrin MO, Akinlabi ET (2021) Constitutive analysis of hot forming process of P91 steel: finite element method approach. Adv Mater Process Technol 00(00):1–12. https://doi.org/10.1080/2374068X.2021.1939560

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualisation and design. Methodology and investigations were performed by Shem Maube, Japheth Obiko, Josias Van der Merwe, Fredrick Mwema, Desmond Klenam and Michael Bodunrin. The first draft of the manuscript was written by Shem Maube and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shem Maube.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maube, S., Obiko, J., Van der Merwe, J. et al. Constitutive analysis of hot metal flow behavior of virgin and rejuvenated heat treatment creep exhausted power plant X20 steel. Int J Adv Manuf Technol 132, 1843–1853 (2024). https://doi.org/10.1007/s00170-024-13443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13443-9

Keywords

Navigation