Skip to main content
Log in

Improvement on leveling ability in counter-rotating electrochemical machining by using a variable voltage

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Roundness error plays an important role of rotating parts in engineering fields and it has a significant influence on the machining quality and accuracy during electrochemical machining (ECM) process. The precision ECM could be processed only if the initial roundness error is decreased or eliminated and the inter-electrode gap (IEG) becomes steady after reaching an equilibrium state. However, a constant voltage is generally used in ECM process. And a long time and a large allowance are required to level the profile error of workblank if the initial profile error is large. In this study, the focus herein is on the acceleration of the leveling process of the rotary workpiece. A counter-rotating electrochemical machining (CRECM) process method with a variable voltage is proposed to improve the leveling ability. For a rotary workpiece with elliptical contours, the machining voltage can be dynamically adjusted based on the IEG through the approximate regulation of sine waves according to modeling-based analysis. The method aims to improve the leveling ability by expanding the difference in the magnitude of electric current between the high and low points on the profile of the anode workpiece under different voltages. The results of experiments confirmed that the proposed method significantly reduced the leveling time from 36 to 7 min (by 81%), and the depth of dissolution of the highest point on the profile from 1.68 to 0.45 mm while reducing the roundness error from 0.5 to 0.05 mm. The leveling ratio increased from 0.26 to 0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tipton H (1976) Principles of electrochemical machining. Electrochim Acta 21(8):657. https://doi.org/10.1016/0013-4686(76)85165-1

    Article  Google Scholar 

  2. Schuster R (2000) Electrochemical micromachining. Science 289(5476):98–101. https://doi.org/10.1126/science.289.5476.98

    Article  Google Scholar 

  3. Lohrengel MM, Rataj KP, Münninghoff T (2016) Electrochemical machining - mechanisms of anodic dissolution. Electrochim Acta 201:348–353. https://doi.org/10.1016/j.electacta.2015.12.219

    Article  Google Scholar 

  4. Lu J, Zhan S, Liu B, Zhao Y (2022) Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material. Int J Extrem Manuf 4:045101. https://doi.org/10.1088/2631-7990/ac84b3

  5. Liu W, Ao S, Li Y, Liu Z, Zhang H, Manladan S, Luo Z, Wang Z (2017) Effect of anodic behavior on electrochemical machining of TB6 titanium alloy. Electrochim Acta 233:190–200. https://doi.org/10.1016/j.electacta.2017.03.025

    Article  Google Scholar 

  6. Bergs T, Harst S (2020) Development of a process signature for electrochemical machining. CIRP Ann 69(1):153–156. https://doi.org/10.1016/j.cirp.2020.04.078

    Article  Google Scholar 

  7. Klocke F, Zeis M, Klink A, Veselovac D (2013) Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components. Proc CIRP 6:368–372. https://doi.org/10.1016/j.procir.2013.03.040

    Article  Google Scholar 

  8. Hynes NRJ, Kumar R (2018) Electrochemical machining of aluminium metal matrix composites. Surf Eng Appl Electrochem 54:367–373. https://doi.org/10.3103/S1068375518040087

    Article  Google Scholar 

  9. Zhao G, Zhao B, Ding W, Xin L, Nian Z, Peng J, He N, Xu J (2024) Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis. Int J Extrem Manuf 6:022007. https://doi.org/10.1088/2631-7990/ad16d6

  10. Rajurkar KP, Zhu D, McGeough JA, Kozak J, Silva AD (1999) New developments in electrochemical machining. CIRP Ann 48(2):567–579. https://doi.org/10.1016/S0007-8506(07)63235-1

    Article  Google Scholar 

  11. Zhu D, Xu HY (2002) Improvement of electrochemical machining accuracy by using dual pole tool. J Mater Process Tech 129(1–3):15–18. https://doi.org/10.1016/S0924-0136(02)00567-8

    Article  Google Scholar 

  12. Lohrengel MM, Rataj KP, Münninghoff T (2016) Electrochemical machining—mechanisms of anodic dissolution. Electrochim Acta 201:348–353. https://doi.org/10.1016/j.electacta.2015.12.219

    Article  Google Scholar 

  13. Zhu D, Gu Z, Xue T, Liu A (2017) Simulation and experimental investigation on a dynamic lateral flow mode in trepanning electrochemical machining. Chin J Aeronaut 30(4):1624–1630. https://doi.org/10.1016/j.cja.2017.02.020

    Article  Google Scholar 

  14. Ge Y, Zhu Z, Wang D (2017) Electrochemical dissolution behavior of the nickel-based cast superalloy K423A in NaNO3 solution. Electrochim Acta 253:379–389. https://doi.org/10.1016/j.electacta.2017.09.046

    Article  Google Scholar 

  15. Baldhoff T, Nock V, Marshall AT (2017) Through-mask electrochemical micromachining of aluminum in phosphoric acid. J Electrochem Soc 164(9):E194. https://doi.org/10.1149/2.0441709jes

    Article  Google Scholar 

  16. Wang J, Xu Z, Wang J, Zhu D (2021) Electrochemical machining on blisk channels with a variable feed rate mode. Chin J Aeronaut 34(6):151–161. https://doi.org/10.1016/j.cja.2020.08.002

    Article  Google Scholar 

  17. Clifton D, Mount AR, Alder GM, Jardine D (2002) Ultrasonic measurement of the inter-electrode gap in electrochemical machining. Int J Mach Tool Manu 42(11):1259–1267. https://doi.org/10.1016/S0890-6955(02)00041-X

    Article  Google Scholar 

  18. Mullya SA, Karthikeyan G (2018) Dielectric flow observation at inter-electrode gap in micro-electro-discharge-milling process. P I Mech Eng B-J Eng 232(6):1079–1089. https://doi.org/10.1177/0954405416662082

    Article  Google Scholar 

  19. Wang J, Xu Z, Liu J, Tang X (2021) Real-time vision-assisted electrochemical machining with constant inter-electrode gap. J Manuf Process 71:384–397. https://doi.org/10.1016/j.jmapro.2021.09.025

    Article  Google Scholar 

  20. Kamaraj AB, Sundaram M (2018) A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing. J Appl Electrochem 48:463–469. https://doi.org/10.1007/s10800-018-1177-3

    Article  Google Scholar 

  21. Mount AR, Clifton D, Howarth P, Sherlock A (2003) An integrated strategy for materials characterisation and process simulation in electrochemical machining. J Mater Process Tech 138(1–3):449–454. https://doi.org/10.1016/S0924-0136(03)00115-8

    Article  Google Scholar 

  22. De Silva AKM, Altena HSJ, McGeough JA (2003) Influence of electrolyte concentration on copying accuracy of precision ECM. CIRP Ann 52(1):165–168. https://doi.org/10.1016/S0007-8506(07)60556-3

    Article  Google Scholar 

  23. Klocke F, Zeis M, Klink A (2015) Interdisciplinary modelling of the electrochemical machining process for engine blades. CIRP Ann 64(1):217–220. https://doi.org/10.1016/j.cirp.2015.04.071

    Article  Google Scholar 

  24. Ernst A, Heib T, Hall T, Schmidt G, Bahre D (2018) Simulation of the tool shape design for the electrochemical machining of jet engine vanes. Proc CIRP 68:762–767. https://doi.org/10.1016/j.procir.2017.12.134

    Article  Google Scholar 

  25. Zong Y, Liu J, Zhu D (2022) Improving blade accuracy via local electrochemical machining with partial insulated cathodes. Precis Eng 76:284–293. https://doi.org/10.1016/j.precisioneng.2022.03.010

    Article  Google Scholar 

  26. Kozak J (1998) (1997) Mathematical models for computer simulation of electrochemical machining processes. J Mater Process Tech 76(1–3):170–175. https://doi.org/10.1016/S0924-0136(97)00333-6

    Article  Google Scholar 

  27. Klocke F, Heidemanns L, Zeis M, Klink A (2018) A novel modeling approach for the simulation of precise electrochemical machining (PECM) with pulsed current and oscillating cathode. Proc CIRP 68:499–504. https://doi.org/10.1016/j.procir.2017.12.081

    Article  Google Scholar 

  28. Zhitnikov VP, Oshmarina EM, Zinnatullina AR (2011) Simulation of precision electrochemical machining of metals by a segmented cathode. J Appl Mech Tech Phy 52:1004–1010. https://doi.org/10.1134/S0021894411060198

    Article  Google Scholar 

  29. Zhu D, Zhu D, Xu ZY, Zhou L (2013) Trajectory control strategy of cathodes in blisk electrochemical machining. Chin J Aeronaut 26(4):1064–1070. https://doi.org/10.1016/j.cja.2013.06.012

    Article  Google Scholar 

  30. Jiang T, Zhu D, Lei GP (2021) Electrochemical trepanning with an auxiliary electrode. Chin J Aeronaut 34(5):183–194. https://doi.org/10.1016/j.cja.2020.08.041

    Article  Google Scholar 

  31. Sheng W, Xu B (2010) Technological test of electrolytic machining of aero-engine casing. Electromach Mould 2:52–59

    Google Scholar 

  32. De Silva AKM, Altena HSJ, McGeough JA (2003) Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Ann 52(1):165–168. https://doi.org/10.1016/S0007-8506(07)60556-3

    Article  Google Scholar 

  33. Kozak J, Rajurkar KP, Ruszaj A, Slawinski RJ (1998) Sculptured surface finishing by NC-elecrochemical machining with ball-end electrode. Postępy Technologii Maszyn i Urządzeń 22(1):53–74

    Google Scholar 

  34. Kozak J, Chuchro M, Ruszaj A, Karbowski K (2000) The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces. J Mater Process Tech 107(1–3):283–287. https://doi.org/10.1016/S0924-0136(00)00697-X

    Article  Google Scholar 

  35. Rajurkar KP, Zhu D, Wei B (1998) Minimization of machining allowance in electrochemical machining. CIRP Ann 47(1):165–168. https://doi.org/10.1016/S0007-8506(07)62809-1

    Article  Google Scholar 

  36. Bähre D, Rebschläger A, Weber O, Steuer P (2013) Reproducible, fast and adjustable surface roughening of stainless steel using pulse electrochemical machining. Proc CIRP 6:384–389. https://doi.org/10.1016/j.procir.2013.03.061

    Article  Google Scholar 

  37. Zhu D, Zhou Y, Zhang R, Qin P (2016) Investigation of leveling ability improvement in pulse electrochemical machining for aero structural components. Int J Adv Manuf Tech 86(5):1723–1732. https://doi.org/10.1007/s00170-015-8295-4

    Article  Google Scholar 

  38. Zhou Y, Zhu D, Xu Z, Zhang X (2020) Effects of gas-mixed electrolyte on leveling ability of electrochemical machining of (γ+ α2+ B2) TiAl intermetallic. Int J Electrochem Sci 15:6314–6329. https://doi.org/10.20964/2020.07.08

    Article  Google Scholar 

  39. Williams JC, Starke EA Jr (2003) Progress in structural materials for aerospace systems. Acta Mater 51(19):5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Article  Google Scholar 

  40. Li D, Hu C, Tan B, Lei W, Tang C (2019) An aeroengine measurement system based on high-precision turntable. Proc SPIE AOPC 11336:185–192. https://doi.org/10.1117/12.2547928

    Article  Google Scholar 

  41. Zhou N, Liu X (2018) Feature-based automatic NC programming for aero-engine casings. P I Mech Eng B-J Eng 233:1289–1301. https://doi.org/10.1177/0954405418769949

    Article  Google Scholar 

  42. Kang H, Li Z, Liu T, Qiao P (2021) Tolerance design of multistage aero-engine casing assembly by vibration characteristic evaluation. J Aerosp Eng 34(5):04021064. https://doi.org/10.1061/(asce)as.1943-5525.0001323

    Article  Google Scholar 

  43. Panigrahi SK, Sarangi N, Chandrasekhar U (2016) Experimental evaluation of overload capability of an annular combustor casing of a gas turbine engine. Exp Tech 40:841–848. https://doi.org/10.1007/s40799-016-0083-z

    Article  Google Scholar 

  44. Wang D, Zhu Z, Wang H, Zhu D (2015) Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method. Chin J Aeronaut 29(2):534–541. https://doi.org/10.1016/j.cja.2015.06.022

    Article  Google Scholar 

  45. Wang D, Zhu Z, He B, Zhu D, Fang Z (2018) Counter-rotating electrochemical machining of a combustor casing part using a frustum cone-like cathode tool. J Manuf Process 35:614–623. https://doi.org/10.1016/j.jmapro.2018.09.016

    Article  Google Scholar 

  46. Wang D, Li J, Zhu D (2019) Counter-rotating electrochemical machining of a convex array using a cylindrical cathode tool with multifold angular velocity. J Electrochem Soc 166(13):E412–E419. https://doi.org/10.1149/2.1121913jes

    Article  Google Scholar 

  47. He B, Wang D, Zhu Z, Li J, Zhu D (2019) Research on counter-rotating electrochemical machining of convex structures with different heights. Int J Adv Manuf Tech 104:3119–3127. https://doi.org/10.1007/s00170-019-04214-y

    Article  Google Scholar 

  48. Cao W, Wang D, Cui G, Le H (2022) Analysis of the roundness error elimination in counter-rotating electrochemical machining. J Manuf Process 76:57–66. https://doi.org/10.1016/j.jmapro.2022.02.015

    Article  Google Scholar 

  49. Courant R, Hilbert D (2011) Methods of mathematical physics, I. Beijing, China

  50. Klocke F, Zeis M, Harst S, Klink A, Veselovac D, Baumgärtner M (2013) Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components. Proc CIRP 8:265–270. https://doi.org/10.1016/j.procir.2013.06.100

    Article  Google Scholar 

  51. Bhattacharyya B, Mitra S, Boro AK (2002) Electrochemical machining: new possibilities for micromachining. Robot Com-Inte Manuf 18(3–4):283–289. https://doi.org/10.1016/S0736-5845(02)00019-4

    Article  Google Scholar 

  52. Domanowski P, Kozak J (2000) Direct and inverse problems of shaping by electrochemical generating machining. J Mater Process Technol 107(1–3):300–306. https://doi.org/10.1016/S0924-0136(00)00671-3

    Article  Google Scholar 

  53. Zhitnikov VP, Sherykhalina NM, Zaripov AA (2016) Modelling of precision steady-state and non-steady-state electrochemical machining by wire electrode-tool. J Mater Process Technol 235:49–54. https://doi.org/10.1016/j.jmatprotec.2016.03.011

    Article  Google Scholar 

  54. Wu M, Liu J, He J, Chen X, Guo Z (2020) Fabrication of surface microstructures by mask electrolyte jet machining. Int J Mach Tool Manuf 148:103471. https://doi.org/10.1016/j.ijmachtools.2019.103471

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 52275436, 52175414), and National Natural Science Foundation of China for Creative Research Groups (Grant No. 51921003).

Author information

Authors and Affiliations

Authors

Contributions

This research will provide a practical solution for manufacturing rotating parts using counter-rotating electrochemical machining technology. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Guowei Cui, Wenjian Cao and Tianyu Fu under the supervision of Professor Dengyong Wang and Professor Zengwei Zhu. The first draft of the manuscript was written by Guowei Cui and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dengyong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, G., Wang, D., Zhu, Z. et al. Improvement on leveling ability in counter-rotating electrochemical machining by using a variable voltage. Int J Adv Manuf Technol 132, 553–569 (2024). https://doi.org/10.1007/s00170-024-13395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13395-0

Keywords

Navigation