Skip to main content
Log in

A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical Additive Manufacturing—a novel non-thermal metal additive manufacturing process offers some advantages over traditional energy beam-based layered manufacturing processes, which have several inherent limitations such as thermal damages, residual stress, and part size restrictions. In this process, the principle of localized electrochemical deposition of metals is combined with the additive manufacturing procedure to manufacture metal parts at room temperature directly from computer-aided design files. The focus of research work presented in this paper is on the modeling of the current density produced in the electrochemical deposition system based on the Fick’s law of diffusion and electrode kinetics using the Butler–Volmer equation. The current densities involved in the micro-electrochemical additive manufacturing on nickel have been found to be several orders of magnitude higher than the standard electroplating studies, making it a very high overpotential deposition. The model developed in this work was used to study the effects of applied potential, pulse duty cycle, inter-electrode gap, and concentration on the current density and the transient diffusion layer thickness. The model predicted that lower inter-electrode gaps facilitated higher current density leading to faster deposition rates. The pulse voltage was found to produce higher current densities during the pulse-on time. The modeled current density values were validated with experimental results using the in-house-built electrochemical additive manufacturing setup.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ASTM-52900-15 (2015) Standard terminology for additive manufacturing—general principles—terminology. ASTM International. https://doi.org/10.1520/ISOASTM52900-15

  2. Schmidt M, Merklein M, Bourell D, Dimitrov D, Hausotte T, Wegener K, Overmeyer L, Vollertsen F, Levy GN (2017) Laser based additive manufacturing in industry and academia. CIRP Ann. https://doi.org/10.1016/j.cirp.2017.05.011

    Google Scholar 

  3. Vaezi M, Seitz H, Yang S (2012) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-012-4605-2

    Google Scholar 

  4. Sundaram M, Kamaraj A, Kumar V (2015) Mask-less electrochemical additive manufacturing: a feasibility study. J Manuf Sci Eng Trans ASME. https://doi.org/10.1115/1.4029022

    Google Scholar 

  5. Madden J, Hunter I (1996) Three-dimensional microfabrication by localized electrochemical deposition. J Microelectromech Syst 5(1):24–32. https://doi.org/10.1109/84.485212

    Article  CAS  Google Scholar 

  6. El-Giar E, Said R, Bridges G, Thomson D (2000) Localized electrochemical deposition of copper microstructures. J Electrochem Soc 147(2):586–591. https://doi.org/10.1149/1.1393237

    Article  CAS  Google Scholar 

  7. Lin C, Lee C, Yang J, Huang Y (2005) Improved copper microcolumn fabricated by localized electrochemical deposition. Electrochem Solid State Lett 8(9):C125–C129. https://doi.org/10.1149/1.1999911

    Article  CAS  Google Scholar 

  8. Lin J, Chang T, Yang J, Chen Y, Chuang C (2010) Localized electrochemical deposition of micrometer copper columns by pulse plating. Electrochim Acta 55(6):1888–1894. https://doi.org/10.1016/j.electacta.2009.11.002

    Article  CAS  Google Scholar 

  9. Jansson A, Thornell G, Johansson S (2000) High resolution 3D microstructures made by localized electrodeposition of nickel. J Electrochem Soc 147(5):1810–1817. https://doi.org/10.1149/1.1393439

    Article  CAS  Google Scholar 

  10. Schindler W, Hofmann D, Kirschner J (2001) Localized electrodeposition using a scanning tunneling microscope tip as a nanoelectrode. J Electrochem Soc 148(2):C124-C130. https://doi.org/10.1149/1.1343107

    Article  Google Scholar 

  11. Lin J, Chang T, Yang J, Jeng J, Lee D, Jiang S (2009) Fabrication of a micrometer Ni-Cu alloy column coupled with a Cu micro-column for thermal measurement. J Micromech Microeng. https://doi.org/10.1088/0960-1317/19/1/015030

    Google Scholar 

  12. Pellicer E, Pane S, Panagiotopoulou V, Fusco S, Sivaraman K, Surinach S, Baro M, Nelson B, Sort J (2012) Localized electrochemical deposition of porous Cu-Ni microcolumns: insights into the growth mechanisms and the mechanical performance. Int J Electrochem Sci 7(5):4014–4029

    CAS  Google Scholar 

  13. Braun T, Schwartz D (2015) Localized electrodeposition and patterning using bipolar electrochemistry. J Electrochem Soc 162(4):D180–D185. https://doi.org/10.1149/2.1031504jes

    Article  CAS  Google Scholar 

  14. Choo RTC, Toguri JM, El-Sherik AM, Erb U (1995) Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating. J Appl Electrochem 25(4):384–403. https://doi.org/10.1007/bf00249659

    Article  CAS  Google Scholar 

  15. Popov K, Keča D, Vidojković S, Lazarević B, Milojković V (1976) Mathematical model and digital simulation of pulsating overpotential copper electrodeposition. J Appl Electrochem 6(4):365–370

    Article  CAS  Google Scholar 

  16. Scharf I, Sieber M, Lampke T (2014) Calculation approach for current-potential behaviour during pulse electrodeposition based on double-layer characteristics. Trans Inst Met Finish 92(6):325–335. https://doi.org/10.1179/0020296714z.000000000205

    Article  CAS  Google Scholar 

  17. Saraby-Reintjes A, Fleischmann M (1984) Kinetics of electrodeposition of nickel from watts baths. Electrochim Acta 29(4):557–566. https://doi.org/10.1016/0013-4686(84)87109-1

    Article  CAS  Google Scholar 

  18. Lantelme F, Seghiouer A, Derja A (1998) Model of nickel electrodeposition from acidic medium. J Appl Electrochem 28(9):907–913. https://doi.org/10.1023/a:1003404118601

    Article  CAS  Google Scholar 

  19. Wang F, Wang F, He H (2016) Parametric electrochemical deposition of controllable morphology of copper micro-columns. J Electrochem Soc 163(10):E322–E327. https://doi.org/10.1149/2.1191610jes

    Google Scholar 

  20. Brant AM, Sundaram MM, Kamaraj AB (2015) Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing. J Manuf Sci Eng 137(1):011018–011018. https://doi.org/10.1115/1.4028198

    Article  Google Scholar 

  21. Kamaraj A, Lewis S, Sundaram M (2016) Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing. Proced CIRP 42:788–792

    Article  Google Scholar 

  22. Skeel R, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1):1–32. https://doi.org/10.1137/0911001

    Article  Google Scholar 

  23. Cui CQ, Lee JY (1994) Effects of oxygen reduction on nickel deposition from unbuffered aqueous solutions: I. Deposition process and deposit structure. J Electrochem Soc 141(8):2030–2035

    Article  CAS  Google Scholar 

  24. Ibrahim MAM (2006) Black nickel electrodeposition from a modified Watts bath. J Appl Electrochem 36(3):295–301. https://doi.org/10.1007/s10800-005-9077-8

    Article  CAS  Google Scholar 

  25. Haghdoost A, Pitchumani R (2011) Numerical analysis of electrodeposition in microcavities. Electrochim Acta 56(24):8260–8271. https://doi.org/10.1016/j.electacta.2011.06.084

    Article  CAS  Google Scholar 

  26. Kim S-M, Jin S-H, Lee Y-J, Lee MH (2017) Design of nickel electrodes by electrodeposition: effect of internal stress on hydrogen evolution reaction in alkaline solutions. Electrochim Acta 252(Supplement C):67–75. https://doi.org/10.1016/j.electacta.2017.08.157

    Article  CAS  Google Scholar 

  27. Oldham KB, Myland JC, Bond AM (2011) Transport. In: Electrochemical science and technology. Wiley, Chichester, pp 145–170. https://doi.org/10.1002/9781119965992.ch8

  28. Ibl N (1980) Some theoretical aspects of pulse electrolysis. Surf Technol 10(2):81–104. https://doi.org/10.1016/0376-4583(80)90056-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. CMMI-1400800 and CMMI-1454181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Sundaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaraj, A.B., Sundaram, M. A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing. J Appl Electrochem 48, 463–469 (2018). https://doi.org/10.1007/s10800-018-1177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1177-3

Keywords

Navigation