Skip to main content
Log in

Tool-pin profile effects on thermal and material flow in friction stir butt welding of AA2219-T87 plates: computational fluid dynamics model development and study

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A three-dimensional coupled model in a Eulerian framework has been developed in COMSOL Multiphysics software and used to study the complex phenomena of thermal and material flow during the friction stir welding (FSW) process. The moving heat source (tool) effect is modelled using a coordinate transformation. The frictional heat as a function of temperature-dependent yield strength of AA2219-T87 material and the deformation energy of plasticized material flow are considered. Further, the plasticized material flow around the rotating tool is modelled as non-Newtonian fluid using partial-sticking/sliding boundary condition with a computed slip factor (δ) at the workpiece-tool material interfaces. The coupled Eulerian model prediction accuracy has been validated against the experimental weldment zones and found a good agreement in terms of the shape and size. Subsequently, the effects of tool-pin profiles (cylindrical and conical) on thermal distribution, material flow, shear strain rates, thermal histories, and weldment zones were studied. It is found that the maximum temperatures, material flow velocities, and shear strain rates are low with the conical tool pin in contrast to the cylindrical one, and it is partly attributed to increased mixing of shoulder and pin-driven material flow around the rotating tool, which in turn decreased the size of weldment zones. Also, the maximum temperatures, material flow velocities, and shear strain rates on the advancing side are higher than those of the retreating side. Therefore, it is suggested to use the CFD model to design the FSW process and tool parameters in a cost-effective way in contrast to the tedious experimental route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AS:

Advancing side

CFD:

Computational fluid dynamics

C p :

Specific heat (J/kg ∙ K)

DSC:

Differential scanning calorimetry

D, d :

Shoulder diameter, pin diameter

F :

Volume force source term (N/m3)

FE:

Finite element

FSW:

Friction stir welding

HAZ:

Heat-affected zone

H :

Tool-pin height (mm)

h conv :

Heat transfer coefficient (W/m2 ∙ K)

k :

Thermal conductivity (W/m ∙ K)

MUMPS:

Multifrontal massively parallel sparse

p :

Pressure (Pa)

PARDISO:

Parallel Sparse Direct Solver

q :

Heat flux (W/m2)

Q vd :

Viscous dissipation energy (W/m3)

r :

Radius (mm)

RS:

Retreating side; rotational speed (rpm)

SS:

Stainless steel

t :

Time (s)

T :

Temperature (K)

TMAZ:

Thermomechanically affected zone

TS:

Traverse speed (mm/min)

TWI:

The Welding Institute

T m :

Melting temperature (K)

u :

Velocity component (m/s)

u :

Velocity vector (m/s)

μ app :

Apparent viscosity (kg/m ∙ s)

u trans :

Translational (traverse) speed (m/s)

v :

Velocity component (m/s)

WNZ:

Weld nugget zone

x, y, z :

Space coordinates (m)

ρ :

Density (kg/m3)

:

Angular velocity (rad/s)

δ :

Slip factor

T :

Temperature difference (K)

σ y :

Yield strength (N/m2)

\(\dot{\gamma}\) :

Shear strain rate (1/s)

∇:

Vector differential operator

b:

Bottom

m:

Melting

p:

Pin

s:

Shoulder

t:

Tool, top

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-smith P (1991) Friction stir butt welding. International Patent Application No 5(460):317

    Google Scholar 

  2. Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459:7–18. https://doi.org/10.1016/j.msea.2006.12.124

    Article  Google Scholar 

  3. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des 29:362–373. https://doi.org/10.1016/j.matdes.2007.01.030

    Article  Google Scholar 

  4. Kumar K, Kailas SV (2008) The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A 485:367–374. https://doi.org/10.1016/j.msea.2007.08.013

    Article  Google Scholar 

  5. Fratini L, Buffa G, Micari F, Shivpuri R (2009) On the material flow in FSW of T-joints: Influence of geometrical and tecnological parameters. Int J Adv Manuf Technol 44:570–578. https://doi.org/10.1007/s00170-008-1836-3

    Article  Google Scholar 

  6. Biswas P, Mandal NR (2011) Effect of tool geometries on thermal history of FSW of AA1100. Weld J 90:129s–135s

    Google Scholar 

  7. Ramanjaneyulu K, Madhusudhan Reddy G, Venugopal Rao A, Markandeya R (2013) Structure-property correlation of AA2014 friction stir welds: role of tool pin profile. J Mater Eng Perform 22:2224–2240. https://doi.org/10.1007/s11665-013-0512-4

    Article  Google Scholar 

  8. Ramanjaneyulu K, Madhusudhan Reddy G, Venugopal Rao A (2014) Role of tool shoulder diameter in friction stir welding: an analysis of the temperature and plastic deformation of AA 2014 aluminium alloy. Trans Indian Inst Met 67:769–780. https://doi.org/10.1007/s12666-014-0401-z

    Article  Google Scholar 

  9. Meshram SD, Reddy GM, Rao AV (2016) Role of threaded tool pin profile and rotational speed on generation of defect free friction stir AA 2014 aluminium alloy welds. Def Sci J 66:57–63. https://doi.org/10.14429/dsj.66.8566

    Article  Google Scholar 

  10. Meshram SD, Madhusudhan Reddy G (2018) Influence of tool tilt angle on material flow and defect generation in friction stir welding of AA2219. Def Sci J 68:512–518. https://doi.org/10.14429/dsj.68.12027

    Article  Google Scholar 

  11. Xu S, Deng X, Reynolds AP, Seidel TU (2001) Finite element simulation of material flow in friction stir welding. Sci Technol Weld Join 6:191–193. https://doi.org/10.1179/136217101101538640

    Article  Google Scholar 

  12. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12:143–157. https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  13. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32A:2879–2884. https://doi.org/10.1007/s11661-001-1038-1

    Article  Google Scholar 

  14. Seidel TU, Reynolds AP (2003) Two-dimensional friction stir welding process model based on fluid mechanics. Sci Technol Weld Join 8:175–183. https://doi.org/10.1179/136217103225010952

    Article  Google Scholar 

  15. Chen CM, Kovacevic R (2003) Finite element modeling of friction stir welding - thermal and thermomechanical analysis. Int J Mach Tools Manuf 43:1319–1326. https://doi.org/10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  16. Zhu XK, Chao YJ (2004) Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol 146:263–272. https://doi.org/10.1016/j.jmatprotec.2003.10.025

    Article  Google Scholar 

  17. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding - experimental and numerical studies. J Manuf Sci Eng 125:138–145. https://doi.org/10.1115/1.1537741

    Article  Google Scholar 

  18. Zhang HW, Zhang Z, Chen JT (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403:340–348. https://doi.org/10.1016/j.msea.2005.05.052

    Article  Google Scholar 

  19. Nandan R, Roy GG, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans A 37A:1247–1259. https://doi.org/10.1007/s11661-006-1076-9

    Article  Google Scholar 

  20. Nandan R, Roy GG, Lienert TJ, Debroy T (2006) Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Join 11:526–537. https://doi.org/10.1179/174329306X107692

    Article  Google Scholar 

  21. Buffa G, Hua J, Shivpuri R, Fratini L (2006) A continuum based fem model for friction stir welding - model development. Mater Sci Eng A 419:389–396. https://doi.org/10.1016/j.msea.2005.09.040

    Article  Google Scholar 

  22. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419:381–388. https://doi.org/10.1016/j.msea.2005.09.041

    Article  Google Scholar 

  23. Khandkar MZH, Khan JA, Reynolds AP, Sutton MA (2006) Predicting residual thermal stresses in friction stir welded metals. J Mater Process Technol 174:195–203. https://doi.org/10.1016/j.jmatprotec.2005.12.013

    Article  Google Scholar 

  24. Bastier A, Maitournam MH, Dang Van K, Roger F (2006) Steady state thermomechanical modelling of friction stir welding. Sci Technol Weld Join 11:278–288. https://doi.org/10.1179/174329306X102093

    Article  Google Scholar 

  25. Grujicic M, He T, Arakere G et al (2010) Fully coupled thermomechanical finite element analysis of material evolution during friction-stir welding of AA5083. Proc Inst Mech Eng Part B J Eng Manuf 224:609–625. https://doi.org/10.1243/09544054JEM1750

    Article  Google Scholar 

  26. Grujicic M, Pandurangan B, Yen CF, Cheeseman BA (2012) Modifications in the AA5083 Johnson-Cook material model for use in friction stir welding computational analyses. J Mater Eng Perform 21:2207–2217. https://doi.org/10.1007/s11665-011-0118-7

    Article  Google Scholar 

  27. Grujicic M, Arakere G, Pandurangan B et al (2012) Computational analysis of material flow during friction stir welding of AA5059 aluminum alloys. J Mater Eng Perform 21:1824–1840. https://doi.org/10.1007/s11665-011-0069-z

    Article  Google Scholar 

  28. Mohanty H, Mahapatra MM, Kumar P et al (2012) Study on the effect of tool profiles on temperature distribution and material flow characteristics in friction stir welding. Proc Inst Mech Eng Part B J Eng Manuf 226:1527–1535. https://doi.org/10.1177/0954405412451811

    Article  Google Scholar 

  29. Al-Badour F, Merah N, Shuaib A, Bazoune A (2013) Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J Mater Process Technol 213:1433–1439. https://doi.org/10.1016/j.jmatprotec.2013.02.014

    Article  Google Scholar 

  30. Hamilton C, Kopyściański M, Senkov O, Dymek S (2013) A coupled thermal/material flow model of friction stir welding applied to Sc-modified aluminum alloys. Metall Mater Trans A Phys Metall Mater Sci 44:1730–1740. https://doi.org/10.1007/s11661-012-1512-y

    Article  Google Scholar 

  31. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a finite element approach. J Manuf Process 23:278–286. https://doi.org/10.1016/j.jmapro.2016.04.008

    Article  Google Scholar 

  32. Kadian AK, Biswas P (2017) Effect of tool pin profile on the material flow characteristics of AA6061. J Manuf Process 26:382–392. https://doi.org/10.1016/j.jmapro.2017.03.005

    Article  Google Scholar 

  33. Sahlot P, Singh AK, Badheka VJ, Arora A (2019) Friction stir welding of copper: numerical modeling and validation. Trans Indian Inst Met. https://doi.org/10.1007/s12666-019-01629-9

  34. Tiwari A, Pankaj P, Suman S, Biswas P (2020) CFD modelling of temperature distribution and material flow investigation during FSW of DH36 shipbuilding grade steel. Trans Indian Inst Met 73:2291–2307. https://doi.org/10.1007/s12666-020-02030-7

    Article  Google Scholar 

  35. Pandian V, Kannan S (2020) Numerical prediction and experimental investigation of aerospace-grade dissimilar aluminium alloy by friction stir welding. J Manuf Process 54:99–108. https://doi.org/10.1016/j.jmapro.2020.03.001

    Article  Google Scholar 

  36. Vicharapu B, Liu H, Fujii H et al (2020) Probing residual stresses in stationary shoulder friction stir welding process. Int J Adv Manuf Technol 106:1573–1586. https://doi.org/10.1007/s00170-019-04570-9

    Article  Google Scholar 

  37. Kesharwani R, Imam M, Sarkar C (2021) Effect of flat probe on local heat generation and microstructural evolution in friction stir welding of 6061-T6 aluminium alloy. Trans Indian Inst Met 74:3185–3203. https://doi.org/10.1007/s12666-021-02386-4

    Article  Google Scholar 

  38. Andrade DG, Leitão C, Dialami N et al (2021) Analysis of contact conditions and its influence on strain rate and temperature in friction stir welding. Int J Mech Sci 191:106095. https://doi.org/10.1016/j.ijmecsci.2020.106095

    Article  Google Scholar 

  39. Su H, Wu CS, Bachmann M, Rethmeier M (2015) Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding. Mater Des 77:114–125. https://doi.org/10.1016/j.matdes.2015.04.012

    Article  Google Scholar 

  40. Shi L, Wu CS (2017) Transient model of heat transfer and material flow at different stages of friction stir welding process. J Manuf Process 25:323–339. https://doi.org/10.1016/j.jmapro.2016.11.008

    Article  Google Scholar 

  41. Chen J, Shi L, Wu C, Jiang Y (2021) The effect of tool pin size and taper angle on the thermal process and plastic material flow in friction stir welding. Int J Adv Manuf Tech 116:2847–2860. https://doi.org/10.1007/s00170-021-07650-x

    Article  Google Scholar 

  42. Jaidi J, Dutta P (2001) Modeling of transport phenomena in a gas metal arc welding process. Numer Heat Transf Part A Appl 40:543–562. https://doi.org/10.1080/10407780152619838

    Article  Google Scholar 

  43. COMSOL Multiphysics (2015) Heat transfer module. © 1998–2018 Comsol 1–222. https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf. Accessed May 2023

  44. Schmidt HB, Hattel JH (2007) Thermal and material flow modelling of friction stir welding using COMSOL. Excerpt from the Proceedings of the COMSOL Conference Hannover. https://www.comsol.com/paper/download/37785/Schmidt.pdf. Accessed May 2023

  45. Bachmann M, Carstensen J, Bergmann L et al (2017) Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds. Int J Adv Manuf Technol 91:1443–1452. https://doi.org/10.1007/s00170-016-9793-8

    Article  Google Scholar 

  46. Colegrove PA, Shercliff HR (2004) Development of Trivex friction stir welding tool part 2 - three-dimensional flow modelling. Sci Technol Weld Join 9:352–361. https://doi.org/10.1179/136217104225021661

    Article  Google Scholar 

  47. Li Q, Wu AP, Li YJ et al (2017) Segregation in fusion weld of 2219 aluminum alloy and its influence on mechanical properties of weld. Trans Nonferrous Met Soc China (English Ed) 27:258–271. https://doi.org/10.1016/S1003-6326(17)60030-X

    Article  Google Scholar 

  48. Manikandan P, Prabhu TA, Manwatkar SK et al (2021) Tensile and fracture properties of aluminium alloy AA2219-T87 friction stir weld joints for aerospace applications. Metall Mater Trans A Phys Metall Mater Sci 52:3759–3776. https://doi.org/10.1007/s11661-021-06337-y

    Article  Google Scholar 

  49. Kang J, Feng ZC, Frankel GS et al (2016) Friction stir welding of Al alloy 2219-T8: part I-evolution of precipitates and formation of abnormal Al2Cu agglomerates. Metall Mater Trans A 47A:4553–4565. https://doi.org/10.1007/s11661-016-3648-7

    Article  Google Scholar 

Download references

Funding

The present work was supported by the grant received from the Aeronautics Research and Development Board (AR&DB), Ministry of Science and Technology, Government of India (project no. ARDB/01/2032007/M/I).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Model development, simulations, and analysis were done by Ramana Murthy Bagadi and Jeevan Jaidi. The first draft of the manuscript was written by Ramana Murthy Bagadi and Jeevan Jaidi and subsequently revised by Atmakur Venugopal Rao, and Suresh Dadulal Meshram. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeevan Jaidi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagadi, R.M., Jaidi, J., Rao, A.V. et al. Tool-pin profile effects on thermal and material flow in friction stir butt welding of AA2219-T87 plates: computational fluid dynamics model development and study. Int J Adv Manuf Technol 131, 5881–5896 (2024). https://doi.org/10.1007/s00170-024-13353-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13353-w

Keywords

Navigation