Skip to main content
Log in

CFD Modelling of Temperature Distribution and Material Flow Investigation During FSW of DH36 Shipbuilding Grade Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A modified heat transfer and material transfer model was investigated for friction stir welding of DH36 steel by considering the Eulerian framework in steady state. During this analysis, temperature-dependent properties of the workpiece and the tool material were used. The material viscosity was modelled as a non-Newtonian viscoplastic fluid depending on the temperature and flow stress. The heat generation at the tool workpiece interface incorporated the partial sticking and partial sliding condition. An asymmetric and skewed temperature distribution at the advancing trailing side was observed. Asymmetry of temperature distribution was increased with an increase in the tool traverse speed. It was observed that the temperature was maximum at the interface between the shoulder and tool, and the peak temperatures decreased non-uniformly along the thickness direction. The results of material flow analysis indicated that the hot plasticized material flew ahead the tool along the retreating side in counter-clockwise direction, passed the tool and got released behind the tool during the welding stage. There existed a swirl region on the advancing side which was highly prone to defect formation. The temperature field and plastic flow field of the computational model matched satisfactorily with the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mishra R S, and Ma Z Y, Mater Sci Eng R Rep 50 (2005) 1. https://doi.org/10.1016/j.mser.2005.07.001.

    Article  CAS  Google Scholar 

  2. Assidi M, and Fourment L, Int J Mater Form 2 (2009) 327. https://doi.org/10.1007/s12289-009-0541-6.

    Article  Google Scholar 

  3. He X, Gu F, and Ball A, Prog Mater Sci 65 (2014) 1. https://doi.org/10.1016/j.pmatsci.2014.03.003.

    Article  Google Scholar 

  4. Kuykendall K, Nelson T, and Sorensen C, Int J Mach Tools Manuf 74 (2013) 74. https://doi.org/10.1016/j.ijmachtools.2013.07.004.

    Article  Google Scholar 

  5. Darvazi A R, and Iranmanesh M, Mater Des 55 (2014) 812. https://doi.org/10.1016/j.matdes.2013.10.030.

    Article  CAS  Google Scholar 

  6. Micallef D, Camilleri D, and Mollicone P, ASME International Mechanical Engineering Congress and Exposition, vol. 56185, p. V02AT02A094. American Society of Mechanical Engineers (2013).

  7. Colegrove P A, and Shercliff H R, Sci Technol Weld Join 11 (2006) 429. https://doi.org/10.1179/174329306x107700.

    Article  CAS  Google Scholar 

  8. Dialami N, Chiumenti M, Cervera M, and Agelet de Saracibar C, Arch Comput Methods Eng (2016) https://doi.org/10.1007/s11831-015-9163-y.

    Article  Google Scholar 

  9. Shi L, Wu C S, and Liu H J, J Mater Eng Perform 23 (2014) 2918. https://doi.org/10.1007/s11665-014-1042-4.

    Article  CAS  Google Scholar 

  10. Schmidt H, and Hattel J, Sci Technol Weld Join 10 (2005) 176. https://doi.org/10.1179/174329305x36070.

    Article  Google Scholar 

  11. Schmidt H, Hattel J, and Wert J, Model Simul Mater Sci Eng 12 (2004) 143. https://doi.org/10.1088/0965-0393/12/1/013.

    Article  Google Scholar 

  12. Micallef D, Camilleri D, Toumpis A, Galloway A, and Arbaoui L, J Mater Des Appl (2015). https://doi.org/10.1177/1464420715583163.

    Article  Google Scholar 

  13. Frigaard Ø, Grong Ø, and Midling O T, Metall Mater Trans A 32 (2001) 1189. https://doi.org/10.1007/s11661-001-0128-4.

    Article  Google Scholar 

  14. Chao Y J, Qi X, and Tang W, J Manuf Sci Eng 125 (2003) 138. https://doi.org/10.1115/1.1537741.

    Article  Google Scholar 

  15. Song M, and Kovacevic R, Int J Mach Tools Manuf 43 (2003) 605. https://doi.org/10.1016/s0890-6955(03)00022-1.

    Article  Google Scholar 

  16. Khandkar MZH, Khan JA, and Reynolds AP, Sci Technol Weld Join 8 (2003) 165.

    Article  Google Scholar 

  17. Cho H, Hong S, Roh J, Choi H, and Hoon S, Acta Mater 61 (2013) 2649. https://doi.org/10.1016/j.actamat.2013.01.045.

    Article  CAS  Google Scholar 

  18. Cho H-H, Kim D-W, Hong S-T, Jeong Y-H, Lee K, Cho Y-G, Kang S H, and Han H N, Metall Mater Trans A 46 (2015) 6040. https://doi.org/10.1007/s11661-015-3177-9.

    Article  CAS  Google Scholar 

  19. Seidel T U, and Reynolds A P, Sci Technol Weld Join 8 (2003) 175. https://doi.org/10.1179/136217103225010952.

    Article  Google Scholar 

  20. Ulysse P, Int J Mach Tools Manuf 42 (2002) 1549. https://doi.org/10.1016/s0890-6955(02)00114-1.

    Article  Google Scholar 

  21. Colegrove P A, Shercliff H R, and Zettler R, Sci Technol Weld Join 12 (2007) 284. https://doi.org/10.1179/174329307x197539.

    Article  CAS  Google Scholar 

  22. Nandan R, Roy G G, and Debroy T, Metall Mater Trans A 37A (2005) 1247.

    Google Scholar 

  23. Nandan R, Roy G G, Lienert T J, and DebRoy T, Sci Technol Weld Join 11 (2006) 526. https://doi.org/10.1179/174329306x107692.

    Article  Google Scholar 

  24. Nandan R, Roy G G, Lienert T J, and Debroy T, Acta Mater 55 (2007) 883. https://doi.org/10.1016/j.actamat.2006.09.009.

    Article  CAS  Google Scholar 

  25. Assidi M, Fourment L, Guerdoux S, and Nelson T, Int J Mach Tools Manuf 50 (2010) 143. https://doi.org/10.1016/j.ijmachtools.2009.11.008.

    Article  Google Scholar 

  26. Arora A, Zhang Z, De A, and DebRoy T, Scr Mater 61 (2009) 863. https://doi.org/10.1016/j.scriptamat.2009.07.015.

    Article  CAS  Google Scholar 

  27. Arora A, Nandan R, Reynolds A P, and DebRoy T, Scr Mater 60 (2009) 13. https://doi.org/10.1016/j.scriptamat.2008.08.015.

    Article  CAS  Google Scholar 

  28. Tiwari A, Pankaj P, Biswas P, Kore S D, and Rao A G, Int J Adv Manuf Technol (2019). https://doi.org/10.1007/s00170-019-03618-0.

    Article  Google Scholar 

  29. Al-moussawi M, Smith A J, Young A, Cater S, and Faraji M, Int J Adv Manuf Technol 92 (2017) 341. https://doi.org/10.1007/s00170-017-0147-y.

    Article  Google Scholar 

  30. Sellars C M and Tegart W J M, Int Metall Rev 17 (1972) 1.

    Article  CAS  Google Scholar 

  31. Sheppard T, and Wright DS, Metals Technol 6(1) (1979) 215–223.

    Article  CAS  Google Scholar 

  32. Hasan A F, Bennett C J, Shipway P H, Cater S, and Martin J, J Mater Process Technol 241 (2017) 129. https://doi.org/10.1016/j.jmatprotec.2016.11.009.

    Article  CAS  Google Scholar 

  33. Tello K E,Gerlich A P, and Mendez P F, Sci Technol Weld Join 15 (2010) 260. https://doi.org/10.1179/136217110x12665778348380.

    Article  CAS  Google Scholar 

  34. Pal S, and Phaniraj M P, J Mater Process Technol 222 (2015) 280. https://doi.org/10.1016/j.jmatprotec.2015.03.015.

    Article  CAS  Google Scholar 

  35. Schmidt H, and Hattel J, Model Simul Mater Sci Eng 13 (2005) 77. https://doi.org/10.1088/0965-0393/13/1/006.

    Article  Google Scholar 

  36. Prasanna P, Rao B S, and Rao G K M, Int J Adv Manuf Technol 51 (2010) 925. https://doi.org/10.1007/s00170-010-2693-4.

    Article  Google Scholar 

  37. Zhu X K, and Chao Y J, J Mater Process Technol 146 (2004) 263. https://doi.org/10.1016/j.jmatprotec.2003.10.025.

    Article  CAS  Google Scholar 

  38. Kadian A K, and Biswas P, J Mater Eng Perform 24 (2015) 4119. https://doi.org/10.1007/s11665-015-1520-3.

    Article  CAS  Google Scholar 

  39. Toumpis A I, Galloway A M, Arbaoui L, and Poletz N, Sci Technol Weld Join 19 (2014) 653. https://doi.org/10.1179/1362171814y.0000000239.

    Article  CAS  Google Scholar 

  40. Grimmett B B, Lienert T J, and Stellwag W L, Jr. Weld J Res Suppl 82 (2003) 1.

    Google Scholar 

  41. Selvaraj M, Murali V, and Rao S R K, Multidiscip Model Mater Struct 9 (2013) 49. https://doi.org/10.1108/15736101311329151.

    Article  CAS  Google Scholar 

  42. Manvatkar V, De A, Svensson L, and Debroy T, Scr Mater 94 (2015) 36. https://doi.org/10.1016/j.scriptamat.2014.09.012.

    Article  CAS  Google Scholar 

  43. Al-Moussawi M, Smith A J, Young A, Cater S, and Faraji M, Int J Adv Manuf Technol (2017). https://doi.org/10.1007/s00170-017-0147-y.

    Article  Google Scholar 

  44. Padmanaban R, Kishore V R, and Balusamy V, Proc Eng 97 (2014) 854. https://doi.org/10.1016/j.proeng.2014.12.360.

    Article  CAS  Google Scholar 

  45. Sadeghian B, Taherizadeh A, and Atapour M, J Mater Process Technol 259 (2018) 96. https://doi.org/10.1016/j.jmatprotec.2018.04.012.

    Article  CAS  Google Scholar 

  46. Chen G, Ma Q, Zhang S, Wu J, Zhang G, and Shi Q, J Mater Sci Technol 34 (2018) 128. https://doi.org/10.1016/j.jmst.2017.10.015.

    Article  Google Scholar 

  47. Hasan A F, Bennett C J, and Shipway P H, Mater Des 87 (2015) 1037. https://doi.org/10.1016/j.matdes.2015.08.016.

    Article  Google Scholar 

  48. Tiwari A, Singh P, Pankaj P, Biswas P, and Kore S D, J Mech Sci Technol 33 (2019) 1. https://doi.org/10.1007/s12206-019-0932-7.

    Article  Google Scholar 

  49. Tingey C, Galloway A, Toumpis A, and Cater S, Mater Des 65 (2015) 896. https://doi.org/10.1016/j.matdes.2014.10.017.

    Article  CAS  Google Scholar 

  50. Stevenson R, Toumpis A, and Galloway A, Mater Des 87 (2015) 701. https://doi.org/10.1016/j.matdes.2015.08.064.

    Article  CAS  Google Scholar 

  51. Zhang J, Zhang H, and Chen Z, J Mater Process Technol 183 (2007) 62.

    Article  CAS  Google Scholar 

  52. Sun Z and Wu C S, J Mater Process Technol 275 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116281.

    Article  Google Scholar 

  53. Morisada Y, Fujii H, Kawahito Y, Nakata K, and Tanaka M, Scr Mater 65 (2011) 1085. https://doi.org/10.1016/j.scriptamat.2011.09.021.

    Article  CAS  Google Scholar 

  54. Reynolds A P, Sci Technol Weld Join 5 (2000) 120. https://doi.org/10.1179/136217100101538119.

    Article  Google Scholar 

  55. Morisada Y, Imaizumi T, Fujii H, Matsushita M, and Ikeda R, J Mater Eng Perform 23 (2014) 4143. https://doi.org/10.1007/s11665-014-1202-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial help received from the Naval Research Board (NRB), DRDO India and Indian Institute of Technology Guwahati, Guwahati, Assam, India for providing the experimental facilities. Authors are also thankful to Akshat Jaiswal, Dual Degree student, NIT Rourkela, Rourkela, India and Piyush Singh, Assistant Professor, Assam Engineering College, Assam, India for helping in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinish Tiwari.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest with the research, its authorships and the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Pankaj, P., Suman, S. et al. CFD Modelling of Temperature Distribution and Material Flow Investigation During FSW of DH36 Shipbuilding Grade Steel. Trans Indian Inst Met 73, 2291–2307 (2020). https://doi.org/10.1007/s12666-020-02030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02030-7

Keywords

Navigation