Skip to main content
Log in

In situ thermomechanical analysis of the primary shear zone in Inconel 718 orthogonal cutting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Inconel 718 is a challenging alloy to machine, commonly employed in the aeronautic and energy industries. There is a continual need to enhance our understanding of its cutting processes to improve its machining applications. This research presents an in situ analysis of the kinematic and thermal fields behaviour of a serrated chip, during orthogonal cutting in the primary shear zone. This study involves a specific self-designed optical system enabling the simultaneous acquisition of both a visible high-speed CCD camera and an infrared camera via a single × 25 magnification reflective objective. A particular attention is brought to evaluate the accuracy of the whole optical system to measure the thermomechanical fields in the unfavourable peculiar cutting conditions among such are high strain rates, texture evolution, strong thermal gradients, and very narrow observation window. The description of the digital image correlation technic within the visible range and the infrared images post-processing are both affronted, and their limitations exposed. To conclude, a deeper characterisation of the primary shear zone shape is done from the kinematic and the thermal point of views showing that, at least under the employed cutting conditions and for Inconel 718 alloy, the primary shear zone width exhibits no thickness despite the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liang X, Liu Z (2017) Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V. Int J Adv Manuf Technol 93(5–8):1617–1626. https://doi.org/10.1007/s00170-017-0654-x

    Article  Google Scholar 

  2. Chau SY, To S, Wang H, Yip WS, Chan KC, Cheung CF (2021) Effect of cutting speed on surface integrity and chip formation in micro-cutting of Zr-based bulk metallic glass. Int J Adv Manuf Technol 114(11–12):3301–3310. https://doi.org/10.1007/s00170-021-06863-4

    Article  Google Scholar 

  3. Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98(5–8):1925–1975. https://doi.org/10.1007/s00170-018-2314-1

    Article  Google Scholar 

  4. M’Saoubi R, Ryde L (2005) Application of the EBSD technique for the characterisation of deformation zones in metal cutting. Mater Sci Eng A 405(1–2):339–349. https://doi.org/10.1016/j.msea.2005.06.002

    Article  CAS  Google Scholar 

  5. Lazoglu I et al (2017) Thermal analysis in Ti-6Al-4V drilling. CIRP Ann 66(1):105–108. https://doi.org/10.1016/j.cirp.2017.04.020

    Article  Google Scholar 

  6. Hamm I, Poulachon G, Rossi F, Biremaux H (2021) Innovative experimental measurements of cutting temperature and thermal partition during Ti-6Al-4V orthogonal cutting. Procedia CIRP 102:281–286. https://doi.org/10.1016/j.procir.2021.09.048

    Article  Google Scholar 

  7. Baizeau T, Campocasso S, Fromentin G, Besnard R (2017) Kinematic Field Measurements During Orthogonal Cutting Tests via DIC with Double-frame Camera and Pulsed Laser Lighting. Exp Mech 57(4):581–591. https://doi.org/10.1007/s11340-016-0248-9

    Article  CAS  Google Scholar 

  8. Outeiro JC, Dias AM, Lebrun JL (2004) Experimental Assessment of Temperature Distribution in Three-Dimensional Cutting Process. Mach Sci Technol 8(3):357–376. https://doi.org/10.1081/MST-200038984

    Article  Google Scholar 

  9. Arriola I, Whitenton E, Heigel J, Arrazola PJ (2011) Relationship between machinability index and in-process parameters during orthogonal cutting of steels. CIRP Ann 60(1):93–96. https://doi.org/10.1016/j.cirp.2011.03.082

    Article  Google Scholar 

  10. Zhang D, Zhang X-M, Ding H (2016) A study on the orthogonal cutting mechanism based on experimental determined displacement and temperature fields. Procedia CIRP 46:35–38. https://doi.org/10.1016/j.procir.2016.03.176

    Article  Google Scholar 

  11. Harzallah M, Pottier T, Gilblas R, Landon Y, Mousseigne M, Senatore J (2018) A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale. Int J Mach Tools Manuf 130–131:20–35. https://doi.org/10.1016/j.ijmachtools.2018.03.003

    Article  Google Scholar 

  12. Bonnet C, Pottier T, Landon Y (2021) Proceedings of the Conference Manufacturing’21. Validation d’un modèle numérique de la coupe oblique du Ti-6Al-4V par mesures de champs thermomécaniques couplées, 10–11 juin 2021, Angers, France [In French]. Available: https://imt-mines-albi.hal.science/hal-03272497/file/Validation-d-un-modele-numerique-de-la-coupe-oblique-du-Ti-6Al-4V.pdf

  13. Bonnet C. (2021) Analyse multi-échelle du chargement thermomécanique induit au cours du perçage du Ti-6Al-4V, PhD Thesis [In French], Ecole nationale des Mines d’Albi-Carmaux, 9 december 2021. Available: https://www.theses.fr/2021EMAC0021

  14. Pieczyska EA, Gadaj SP, Nowacki WK, Tobushi H (2006) Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542. https://doi.org/10.1007/s11340-006-8351-y

    Article  CAS  Google Scholar 

  15. Orteu J-J, Rotrou Y, Sentenac T, Robert L (2008) An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: principle and preliminary results. Exp Mech 48(2):163–179. https://doi.org/10.1007/s11340-007-9071-7

    Article  Google Scholar 

  16. Charkaluk E, Bodelot L, Sabatier L, Noy PD. Proceedings of the French Congress of Mechanic (CFM). Etude du lien entre champs de déformation et champs de température à l’échelle de la microstructure d’un acier inoxydable 316L, 24 -28 August 2009, Marseille, France [In French]. Available: https://hal.science/hal-03391456v1/document

  17. Louche H, Schlosser P, Favier D, Orgéas L (2012) Heat source processing for localized deformation with non-constant thermal conductivity. Application to Superelastic Tensile Tests of NiTi Shape Memory Alloys. Exp Mech 52(9):1313–1328. https://doi.org/10.1007/s11340-012-9607-3

    Article  Google Scholar 

  18. Samaca Martinez JR, Balandraud X, Toussaint E, Le Cam J-B, Berghezan D (2014) Thermomechanical analysis of the crack tip zone in stretched crystallizable natural rubber by using infrared thermography and digital image correlation. Polymer 55(24):6345–6353. https://doi.org/10.1016/j.polymer.2014.10.010

    Article  CAS  Google Scholar 

  19. Keyhani A, Yang R, Zhou M (2019) Novel capability for microscale in-situ imaging of temperature and deformation fields under dynamic loading. Exp Mech 59(5):775–790. https://doi.org/10.1007/s11340-019-00495-2

    Article  Google Scholar 

  20. Merchant ME (1945) Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip. J Appl Phys 16(5):267–275. https://doi.org/10.1063/1.1707586

    Article  ADS  Google Scholar 

  21. Oxley PLB (1988) Modelling machining processes with a view to their optimization and to the adaptive control of metal cutting machine tools. Robot Comput-Integr Manuf 4(1–2):103–119. https://doi.org/10.1016/0736-5845(88)90065-8

    Article  Google Scholar 

  22. Poissenot-Arrigoni C, Marcon B, Rossi F, Fromentin G (2023) Fast and easy radiometric calibration method integration time insensitive for infrared thermography. Infrared Phys. Technol 104741. https://doi.org/10.1016/j.infrared.2023.104741

  23. Poissenot-Arrigoni C, Marcon B, Rossi F, Fromentin G (2023) In-situ pixel-wise emissivity measurement using a multispectral infrared camera. J Imaging 9(10):198. https://doi.org/10.3390/jimaging9100198

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li D, Feng C, Gao S, Daniel K, Chen L (2018) Effect of pyrometer type and wavelength selection on temperature measurement errors for turbine blades. Infrared Phys Technol 94:255–262. https://doi.org/10.1016/j.infrared.2018.09.004

    Article  ADS  CAS  Google Scholar 

  25. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519. https://doi.org/10.1007/s11340-012-9603-7

    Article  Google Scholar 

  26. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001. https://doi.org/10.1088/0957-0233/20/6/062001

    Article  ADS  CAS  Google Scholar 

  27. Wang B, Pan B (2016) Subset-based local vs. finite element-based global digital image correlation: A comparison study. Theor Appl Mech Lett 6(5):200–208. https://doi.org/10.1016/j.taml.2016.08.003

    Article  ADS  Google Scholar 

  28. Koyanagi J, Nagayama H, Yoneyama S, Aoki T (2016) Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation. Mech Time-Depend Mater 20(2):219–232. https://doi.org/10.1007/s11043-016-9292-1

    Article  ADS  CAS  Google Scholar 

  29. Hild F, Roux S. Correli Q4: A software for-finite-element-displacement field measurements by digital image correlation’, Jan. 2008, Accessed: Oct. 16, 2023. [Online]. Available: https://www.academia.edu/15242381/Correli_Q4_A_software_for_finite_element_displacement_field_measurements_by_digital_image_correlation

  30. Grzesik W (2008) Advanced Machining Processes of Metallic Materials: Theory. Elsevier, Modelling and Applications

    Google Scholar 

  31. Pottier T, Germain G, Calamaz M, Morel A, Coupard D (2014) Sub-millimeter measurement of finite strains at cutting tool tip vicinity. Exp Mech 54(6):1031–1042. https://doi.org/10.1007/s11340-014-9868-0

    Article  CAS  Google Scholar 

  32. Arrazola P-J, Aristimuno P, Soler D, Childs T (2015) Metal cutting experiments and modelling for improved determination of chip/tool contact temperature by infrared thermography. CIRP Ann 64(1):57–60. https://doi.org/10.1016/j.cirp.2015.04.061

    Article  Google Scholar 

  33. Soler D, Childs THC, Arrazola PJ (2015) A note on interpreting tool temperature measurements from thermography. Mach Sci Technol 19(1):174–181. https://doi.org/10.1080/10910344.2014.991027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Poissenot-Arrigoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poissenot-Arrigoni, C., Marcon, B., Berthel, B. et al. In situ thermomechanical analysis of the primary shear zone in Inconel 718 orthogonal cutting. Int J Adv Manuf Technol 131, 1515–1529 (2024). https://doi.org/10.1007/s00170-024-13131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13131-8

Keywords

Navigation