Skip to main content
Log in

Novel Capability for Microscale In-situ Imaging of Temperature and Deformation Fields under Dynamic Loading

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

To understand the mesoscale mechanisms responsible for the behavior of heterogeneous materials and to validate models, it is important to experimentally measure the deformation and temperature fields at the microstructure level. So far, there has been no methods that can yield such measurements simultaneously for dynamic experiments. Here, we report the development of a novel capability for simultaneous time- and space-resolved recording of both fields over the same microstructure area of a sample with micron-level spatial resolutions and microsecond time resolutions. Referred to as MINTED (Microscale In-situ Imaging of Dynamic Temperature and Deformation Fields), the system cohesively integrates a high-speed visible light (VL) camera and a state-of-the-art high-speed infrared (IR) camera via a custom-designed dichroic beam splitter-lens assembly. The combined VL and IR images allow the deformation fields to be obtained through digital image correlation (DIC) and the temperature fields over the same area to be obtained through pixel-level calibration of the differing emissivities of heterogeneous constituents in microstructures. Experiments are conducted on granular sucrose in a Kolsky bar [or split-Hopkinson pressure bar (SHPB)] environment, yielding both microstructure level fields along with overall material response. The strain and temperature fields provide detailed first-time insight into the processes of fracture, friction, shear localization, and hotspot development in the microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hartley KA, Duffy J, Hawley RH (1987) Measurement of the temperature profile during shear band formation in steels deforming at high strain rates. J Mech Phys Solids 35(3):283–301. https://doi.org/10.1016/0022-5096(87)90009-3

  2. Marchand A, Duffy J (1988) An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids 36(3):251–283. https://doi.org/10.1016/0022-5096(88)90012-9

  3. Zhou M, Rosakis AJ, Ravichandran G (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44(6):981–1006. https://doi.org/10.1016/0022-5096(96)00003-8

  4. Guduru PR, Rosakis AJ, Ravichandran G (2001) Dynamic shear bands: an investigation using high speed optical and infrared diagnostics. Mech Mater 33(7):371–402. https://doi.org/10.1016/S0167-6636(01)00051-5

    Article  Google Scholar 

  5. Li Z, Lambros J (2001) Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct 38(20):3549–3562. https://doi.org/10.1016/S0020-7683(00)00223-7

    Article  MATH  Google Scholar 

  6. Li Z, Lambros J (2000) Dynamic thermomechanical behavior of fiber reinforced composites. Compos A: Appl Sci Manuf 31(6):537–547. https://doi.org/10.1016/S1359-835X(99)00102-5

    Article  Google Scholar 

  7. Goretta KC, Park ET, Koritala RE, Cuber MM, Pascual EA, Chen N, de Arellano-López AR, Routbort JL (1998) Thermomechanical response of polycrystalline BaZrO3. Physica C 309(3):245–250. https://doi.org/10.1016/S0921-4534(98)00588-7

  8. Mukherjee K, Sircar S, Dahotre NB (1985) Thermal effects associated with stress-induced martensitic transformation in a Ti-Ni alloy. Mater Sci Eng 74(1):75–84. https://doi.org/10.1016/0025-5416(85)90111-9

    Article  Google Scholar 

  9. McCormick PG, Liu Y, Miyazaki S (1993) Intrinsic thermal-mechanical behaviour associated with the stress-induced martensitic transformation in NiTi. Mater Sci Eng A 167(1):51–56. https://doi.org/10.1016/0921-5093(93)90336-D

    Article  Google Scholar 

  10. Field J, Bourne N, Palmer S, Walley S, Sharma J, Beard B (1992) Hot-spot ignition mechanisms for explosives and propellants [and discussion]. Philos Trans R Soc London A 339(1654):269–283. https://doi.org/10.1098/rsta.1992.0034

  11. Field JE, Swallowe GM, Heavens SN (1982) Ignition mechanisms of explosives during mechanical deformation. Proc R Soc London A 382(1782):231–244. https://doi.org/10.1098/rspa.1982.0099

  12. Tarver CM, Chidester SK, Nichols AL (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100(14):5794–5799. https://doi.org/10.1021/jp953123s

    Article  Google Scholar 

  13. Winter RE, Field JE (1975) The role of localized plastic flow in the impact initiation of explosives. Proc R Soc London A 343(1634):399–413. https://doi.org/10.1098/rspa.1975.0074

  14. Guirguis RH (2000) Ignition due to macroscopic shear. AIP Conf Proc 505(1):647–650. https://doi.org/10.1063/1.1303556

  15. Skidmore C, Phillips D, Asay B, Idar D, Howe P, Bolme D (2000) Microstructural effects in PBX 9501 damaged by shear impact. AIP Conf Proc 505(1):659–662. https://doi.org/10.1063/1.1303559

  16. Menikoff R (2005) Elastic-plastic response of HMX. Research highlights.

  17. Ravindran S, Tessema A, Kidane A (2017) Multiscale damage evolution in polymer bonded sugar under dynamic loading. Mech Mater 114:97–106. https://doi.org/10.1016/j.mechmat.2017.07.016

    Article  Google Scholar 

  18. Bloomquist D, Sheffield S (1981) Shock-compression temperature rise in polymethyl methacrylate determined from resistivity of embedded copper foils. Appl Phys Lett 38(3):185–187. https://doi.org/10.1063/1.92272

    Article  Google Scholar 

  19. Bloomquist D, Sheffield S (1980) Thermocouple temperature measurements in shock-compressed solids. J Appl Phys 51(10):5260–5266. https://doi.org/10.1063/1.327480

    Article  Google Scholar 

  20. Boboridis K, Obst AW (2003) A high-speed four-channel infrared pyrometer. AIP Conf Proc 684(1):759–764. https://doi.org/10.1063/1.1627219

  21. Long DA (1977) Raman spectroscopy. McGraw-Hill, New York

  22. Yuan V, Bowman JD, Funk D, Morgan G, Rabie R, Ragan C, Quintana J, Stacy H (2005) Shock temperature measurement using neutron resonance spectroscopy. Phys Rev Lett 94(12):125504. https://doi.org/10.1103/PhysRevLett.94.125504

    Article  Google Scholar 

  23. Dolan DH, Ao T, Seagle CT (2013) Reflectance thermometry in dynamic compression experiments. AIP Conf Proc 1552(1):767–770. https://doi.org/10.1063/1.4819639

  24. Dolan DH, Seagle CT, Ao T (2013) Dynamic temperature measurements with embedded optical sensors. SANDIA report no SAND2013-8203.

  25. Coffey C, Jacobs S (1981) Detection of local heating in impact or shock experiments with thermally sensitive films. J Appl Phys 52(11):6991–6993. https://doi.org/10.1063/1.328664

    Article  Google Scholar 

  26. Zehnder AT, Rosakis AJ (1991) On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel. J Mech Phys Solids 39(3):385-415. https://doi.org/10.1016/0022-5096(91)90019-K

  27. Costin L, Crisman E, Hawley RH, Duffy J (1980) On the localisation of plastic flow in mild steel tubes under dynamic torsional loading. Proc 2nd Conf mechanical properties of materials at high rates of strain, Oxford, England, pp 90–100.

  28. Soudre-Bau L, Meshaka Y, Parent G, Boulet P, Le Corre B, Jeandel G (2013) Combined temperature and deformation measurement during glass forming in a real scale setup. Exp Mech 53(9):1773–1781. https://doi.org/10.1007/s11340-013-9764-z

    Article  Google Scholar 

  29. Bodelot L, Charkaluk E, Sabatier L, Dufrénoy P (2011) Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography. Mech Mater 43(11):654–670. https://doi.org/10.1016/j.mechmat.2011.08.006

    Article  Google Scholar 

  30. Bodelot L, Sabatier L, Charkaluk E, Dufrénoy P (2009) Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel. Mater Sci Eng A 501(1):52–60. https://doi.org/10.1016/j.msea.2008.09.053

    Article  Google Scholar 

  31. Bertram Hopkinson FRS (1914) A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets. Philos Trans R Soc London A 213(497-508):437–456. https://doi.org/10.1098/rsta.1914.0010

  32. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62(11):676

  33. Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11(3):155–179. https://doi.org/10.1016/0022-5096(63)90050-4

  34. Staab GH, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31(3):232–235. https://doi.org/10.1007/bf02326065

    Article  Google Scholar 

  35. Gilat A, Cheng C-S (2000) Torsional split Hopkinson bar tests at strain rates above 104s−1. Exp Mech 40(1):54–59. https://doi.org/10.1007/bf02327548

  36. Hartley K, Duffy J, Hawley R (1985) The torsional Kolsky (split-Hopkinson) bar. Metals handbook 8:218–228.

  37. Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41(3):252–260. https://doi.org/10.1016/j.mechmat.2008.10.004

    Article  Google Scholar 

  38. Grantham SG, Siviour CR, Proud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15(9):1867. https://doi.org/10.1088/0957-0233/15/9/025

    Article  Google Scholar 

  39. Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802-060839. https://doi.org/10.1115/1.3124647

  40. Chen R, Xia K, Dai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76(9):1268–1276. https://doi.org/10.1016/j.engfracmech.2009.02.001

    Article  Google Scholar 

  41. Wang QZ, Feng F, Ni M, Gou XP (2011) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469. https://doi.org/10.1016/j.engfracmech.2011.06.004

    Article  Google Scholar 

  42. Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202. https://doi.org/10.1016/S0022-5096(96)00117-2

  43. Bacon C (1998) An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Exp Mech 38(4):242–249. https://doi.org/10.1007/bf02410385

    Article  Google Scholar 

  44. Bacon C (1999) Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects. Int J Impact Eng 22(1):55–69. https://doi.org/10.1016/S0734-743X(98)00048-7

  45. Frew D, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41(1):40–46. https://doi.org/10.1007/BF02323102

    Article  Google Scholar 

  46. Song B, Chen W (2004) Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Exp Mech 44(3):300–312. https://doi.org/10.1007/bf02427897

    Article  Google Scholar 

  47. Othman R (2018) The Kolsky-Hopkinson bar machine: selected topics. Springer International Publishing, Cham.

  48. Lindholm US (1964) Some experiments with the split hopkinson pressure bar. J Mech Phys Solids 12(5):317–335. https://doi.org/10.1016/0022-5096(64)90028-6

  49. Noble JP, Goldthorpe BD, Church P, Harding J (1999) The use of the Hopkinson bar to validate constitutive relations at high rates of strain. J Mech Phys Solids 47(5):1187–1206. https://doi.org/10.1016/S0022-5096(97)00090-2

  50. Chen JJ, Guo BQ, Liu HB, Liu H, Chen PW (2014) Dynamic Brazilian test of brittle materials using the Split Hopkinson pressure bar and digital image correlation. Strain 50(6):563–570. https://doi.org/10.1111/str.12118

    Article  Google Scholar 

  51. Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, Funnell C, Hai F, Qi ML, Fezzaa K, Luo SN, Chen W (2013) High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev Sci Instrum 84(2):025102. https://doi.org/10.1063/1.4789780

    Article  Google Scholar 

  52. Yeager JD, Higginbotham Duque AL, Shorty M, Bowden PR, Stull JA (2018) Development of inert density mock materials for HMX. J Energ Mater 36(3):253–265. https://doi.org/10.1080/07370652.2017.1375049

  53. Ramos K, Bahr D (2007) Mechanical behavior assessment of sucrose using nanoindentation. J Mater Res 22(7):2037–2045. https://doi.org/10.1557/jmr.2007.0249

    Article  Google Scholar 

  54. Hardman J, Lilley B (1970) Deformation of particles during briquetting. Nature 228(5269):353. https://doi.org/10.1038/228353b0

    Article  Google Scholar 

  55. Huffine CL (1953) A study of the bonding and cohesion achieved in the compression of particulate materials. Columbia University, New York City.

  56. Bridgman PW (1952) Physics of high pressure. Bell, London.

  57. Blaber J, Adair B, Antoniou A (2015) Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech 55(6):1105–1122. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  58. Pan B (2009) Reliability-guided digital image correlation for image deformation measurement. Appl Opt 48(8):1535–1542. https://doi.org/10.1364/AO.48.001535

    Article  Google Scholar 

  59. Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46(3):033601. https://doi.org/10.1117/1.2714926

    Article  Google Scholar 

  60. Rubino V, Rosakis AJ, Lapusta N (2017) Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat Commun 8:15991. https://doi.org/10.1038/ncomms15991

    Article  Google Scholar 

  61. Forsberg F, Siviour CR (2009) 3D deformation and strain analysis in compacted sugar using x-ray microtomography and digital volume correlation. Meas Sci Technol 20(9):095703. https://doi.org/10.1088/0957-0233/20/9/095703

    Article  Google Scholar 

  62. Keyhani A, Kim S, Horie Y, Zhou M (2018) Energy dissipation in polymer-bonded explosives with various levels of constituent plasticity and internal friction. Comput Mater Sci 159:136–149. https://doi.org/10.1016/j.commatsci.2018.12.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Air Force Office of Scientific Research through grant FA9550-15-1-0499 (Dr. Martin Schmidt). Experiments were performed at the Dynamic Property Research Laboratory (DPRL) at Georgia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyhani, A., Yang, R. & Zhou, M. Novel Capability for Microscale In-situ Imaging of Temperature and Deformation Fields under Dynamic Loading. Exp Mech 59, 775–790 (2019). https://doi.org/10.1007/s11340-019-00495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00495-2

Keywords

Navigation