Skip to main content
Log in

Modeling and prediction of full-term thermal error in linear axis of machine tools based on MSTGCN-A

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

According to ISO 230-3, the linear axis includes six thermal error motions. Measuring and modeling multi-position full-term thermal errors in linear axis are challenging and essential since they are position-dependent and time-varying. This study presents for the first time a method for modeling and predicting the full-term thermal error of linear axis with multi-positions. Firstly, the full-term thermal error of the linear axis was measured in real-time. The nonlinearity and time delay of the thermal deformation of the screw are analyzed based on the heat transfer theory. Then, a multidimensional spatio-temporal graph convolution-attention mechanism (MSTGCN-A) model is proposed to model the full-term thermal error at multi-positions on the linear axis. The model adaptively learns the adjacency relationship of nodes and fuses the spatial information of temperature points without screening temperature-sensitive points. GRU-CNN, MTCN-A, and BiLSTM-CNN are also used as comparative models to verify the accuracy of the models. Under varying operating conditions, the proposed model outperforms the comparative model that requires temperature-sensitive point selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdulshahed AM, Longstaff AP, Fletcher S et al (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera[J]. Appl Math Model 39(7):1837–1852

    Article  Google Scholar 

  2. Aggogeri F, Merlo A, Mazzola M (2010) Multifunctional structure solutions for ultra high precision (UHP) machine tools[J]. Int J Mach Tools Manuf 50(4):366–373

    Article  Google Scholar 

  3. Grama SN, Mathur A, Badhe AN (2018) A model-based cooling strategy for motorized spindle to reduce thermal errors[J]. Int J Mach Tools Manuf 132:3–16

    Article  Google Scholar 

  4. Ge Z, Ding X (2018) Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP[J]. Int J Mach Tools Manuf 125:99–111

    Article  Google Scholar 

  5. Weng L, Gao W, Zhang D et al (2021) Analytical modelling method for thermal balancing design of machine tool structural components[J]. Int J Mach Tools Manuf 164:103715

    Article  Google Scholar 

  6. Liu J, Ma C, Wang S (2020) Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools[J]. Mech Syst Signal Process 138:106538

    Article  Google Scholar 

  7. Huang N, Zhang Y, Zhu L et al (2022) Visually quantifiable test piece for five-axis machine tools thermal effects[J]. J Manuf Sci Eng 144(5):054501

  8. Horejš O, Mareš M, Havlík L (2022) Compensation of thermally induced errors in five-axis computer numerical control machining centers equipped with different spindles[J]. J Manuf Sci Eng 144(10):101009

    Article  Google Scholar 

  9. Zapłata J, Pajor M (2019) Piecewise compensation of thermal errors of a ball screw driven CNC axis[J]. Precis Eng 60:160–166

    Article  Google Scholar 

  10. Ibaraki S, Blaser P, Shimoike M et al (2016) Measurement of thermal influence on a two-dimensional motion trajectory using a tracking interferometer[J]. CIRP Ann 65(1):483–486

    Article  Google Scholar 

  11. Gui H, Liu J, Ma C et al (2023) Mist-edge-fog-cloud computing system for geometric and thermal error prediction and compensation of worm gear machine tools based on ONT-GCN spatial–temporal model[J]. Mech Syst Signal Process 184:109682

    Article  Google Scholar 

  12. Shi H, Xiao Y, Mei X et al (2023) Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line[J]. ISA Trans 135:575–584

    Article  Google Scholar 

  13. Mian NS, Fletcher S, Longstaff AP (2019) Reducing the latency between machining and measurement using FEA to predict thermal transient effects on CMM measurement[J]. Measurement 135:260–277

    Article  Google Scholar 

  14. Li Z, Zhao C, Lu Z (2020) Thermal error modeling method for ball screw feed system of CNC machine tools in x-axis[J]. Int J Adv Manuf Technol 106:5383–5392

    Article  Google Scholar 

  15. Zhang C, Gao F, Yan L (2017) Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature[J]. Precis Eng 47:231–238

    Article  Google Scholar 

  16. Li Y, Yu M, Bai Y et al (2021) A review of thermal error modeling methods for machine tools[J]. Appl Sci 11(11):5216

    Article  Google Scholar 

  17. Wei X, Ye H, Miao E et al (2022) Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools[J]. Precis Eng 77:65–76

    Article  Google Scholar 

  18. Liu H, Miao EM, Wei XY et al (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm[J]. Int J Mach Tools Manuf 113:35–48

    Article  Google Scholar 

  19. Zhu M, Yang Y, Feng X et al (2023) Robust modeling method for thermal error of CNC machine tools based on random forest algorithm[J]. J Intell Manuf 34(4):2013–2026

    Article  Google Scholar 

  20. Liang YC, Li WD, Lou P et al (2022) Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory networks and fog-cloud architecture[J]. J Manuf Syst 62:950–963

    Article  Google Scholar 

  21. Abdulshahed AM, Longstaff AP, Fletcher S et al (2016) Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model[J]. J Manuf Syst 41:130–142

    Article  Google Scholar 

  22. Chen Y, Chen J, Xu G (2021) A data-driven model for thermal error prediction considering thermoelasticity with gated recurrent unit attention[J]. Measurement 184:109891

    Article  Google Scholar 

  23. Mayr J, Müller M, Weikert S (2016) Automated thermal main spindle & B-axis error compensation of 5-axis machine tools[J]. CIRP Ann 65(1):479–482

    Article  Google Scholar 

  24. Gao W, Ibaraki S, Donmez MA et al (2023) Machine tool calibration: measurement, modeling, and compensation of machine tool errors[J]. Int J Mach Tools Manuf 187:104017

  25. Ye WH, Guo YX, Zhou HF et al (2020) Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine[J]. Adv Manuf 8:119–132

    Article  Google Scholar 

  26. Gao F, Hei C, Liu J et al (2021) Synthetic positioning error modelling of a feed axis for a precision CNC machine tool[J]. Int J Adv Manuf Technol 114:1385–1394

    Article  Google Scholar 

  27. Miao E, Liu Y, Liu H et al (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool[J]. Int J Mach Tools Manuf 97:50–59

    Article  Google Scholar 

  28. Liu J, Ma C, Gui H et al (2021) Thermally-induced error compensation of spindle system based on long short term memory neural networks[J]. Appl Soft Comput 102:107094

    Article  Google Scholar 

  29. Delbressine FLM, Florussen GHJ, Schijvenaars LA et al (2006) Modelling thermomechanical behaviour of multi-axis machine tools[J]. Precis Eng 30(1):47–53

    Article  Google Scholar 

  30. Shi H, Ma C, Yang J et al (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools[J]. Int J Mach Tools Manuf 97:60–71

    Article  Google Scholar 

  31. Ma C, Liu J, Wang S (2020) Thermal error compensation of linear axis with fixed-fixed installation[J]. Int J Mech Sci 175:105531

    Article  Google Scholar 

  32. Wu Z, Pan S, Long G et al (2020) Connecting the dots: multivariate time series forecasting with graph neural networks[C]. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 753–763

    Chapter  Google Scholar 

  33. Abu-El-Haija S, Perozzi B, Kapoor A et al (2019) Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing[C]. In: Proceedings of the 36th International Conference on Machine Learning, PMLR 97:21–29

  34. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv 1803:01271

    Google Scholar 

  35. Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

    Google Scholar 

  36. Lin Z, Feng M, Santos CN et al (2017) A structured self-attentive sentence embedding [J]. arXiv preprint arXiv 1703:03130

    Google Scholar 

  37. ISO (2007) ISO 230-3 Test code for machine tools, Part 3. In: Determination of thermal effects[M], International Organisation for Standardization

    Google Scholar 

  38. Akiba T, Sano S, Yanase T et al (2019) Optuna: A next-generation hyperparameter optimization framework[C]. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2623–2631

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 52075337) and Ministry of Industry and Information Technology high quality development special project, China (No. TC230H0AG-32).

Funding

This work was supported by the National Natural Science Foundation of China (52075337), Ministry of Industry and Information Technology high quality development special project, China (TC230H0AG-32) and Shanghai Rising-Star Program (21QB1405300).

Author information

Authors and Affiliations

Authors

Contributions

ZZ: conceptualization, methodology, data collection, and writing—original draft preparation. NH: conceptualization, methodology, investigation, and writing—review and editing. YS: conceptualization and writing—review and editing. GJ: data collection and data analysis. XZ: investigation and resources. LZ: investigation and resources.

Corresponding author

Correspondence to Nuodi Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Huang, N., Shen, Y. et al. Modeling and prediction of full-term thermal error in linear axis of machine tools based on MSTGCN-A. Int J Adv Manuf Technol 130, 4805–4819 (2024). https://doi.org/10.1007/s00170-024-13021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13021-z

Keywords

Navigation