Skip to main content
Log in

Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

This paper describes a novel modeling method for determining the thermal deformation coefficient of the moving shaft of a machine tool. Firstly, the relation between the thermal deformation coefficient and the thermal expansion coefficient is expounded, revealing that the coefficient of thermal deformation is an important factor affecting the precision of moving shaft feed systems. Then, thermal errors and current boundary and machining conditions are measured using sensors to obtain the first set of parameters for a thermal prediction model. The dynamic characteristics of the positioning and straightness thermal errors of the moving axis of a machine tool are analyzed under different feed speeds and mounting modes of the moving shaft and bearing. Finally, the theoretical model is derived from experimental data, and the axial and radial thermal deformation coefficients at different time and positions are obtained. The expressions for the axial and radial thermal deformation of the moving shaft are modified according to theoretical considerations, and the thermal positioning and straightness error models are established and experimentally verified. This modeling method can be easily extended to other machine tools to determine thermal deformation coefficients that are robust and self-correcting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mayr J, Jedrzejewski J, Uhlmann E et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61:771–791

    Article  Google Scholar 

  2. Putz M, Richter C, Regel J et al (2018) Industrial relevance and causes of thermal issues in machine tools. In: Proceedings of the conference on thermal issues in machine tools, 21–23 March, Dresden, pp 723–736

  3. Liu K, Liu H, Li T et al (2018) Prediction of comprehensive thermal error of a preloaded ball screw on a gantry milling machine. J Manuf Sci Eng 140(2):021004. https://doi.org/10.1115/1.4037236

    Article  Google Scholar 

  4. Wang HT, Li TM, Wang LP et al (2015) Review on thermal error modeling of machine tools. J Mech Eng 51(9):119–128

    Article  Google Scholar 

  5. Chen JS (1996) A study of thermally induced machine tool errors in real cutting conditions. Int J Mach Tools Manuf 36(12):1401–1411

    Article  Google Scholar 

  6. Mize CD, Ziegert JC (2000) Neural network thermal error compensation of a machining center. Precis Eng 24(4):338–346

    Article  Google Scholar 

  7. Zhang Y, Yang JG (2011) Modeling for machine tool thermal error based on grey model preprocessing neural network. J Mech Eng 47(7):134–139

    Article  Google Scholar 

  8. Zhang Y, Yang JG, Xiang ST et al (2013) Volumetric error modeling and compensation considering thermal effect on five-axis machine tools. Proc Inst Mech Eng Part C J Mech Eng Sci 227(5):1102–1115

    Article  Google Scholar 

  9. Blaser P, Pavliček F, Mori K et al (2017) Adaptive learning control for thermal error compensation of 5-axis machine tools. J Manuf Syst 44(2):302–309

    Article  Google Scholar 

  10. Wei X, Gao F, Li Y et al (2018) Study on optimal independent variables for the thermal error model of CNC machine tools. Int J Adv Manuf Technol 98(1/4):657–669

    Article  Google Scholar 

  11. Yongjin K, Jeong MK, Omitaomub OA (2006) Adaptive support vector regression analysis of closed-loop inspection accuracy. Int J Mach Tools Manuf 46(6):603–610

    Article  Google Scholar 

  12. Liu H, Miao EM, Wei XY et al (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tools Manuf 113:35–48

    Article  Google Scholar 

  13. Bai FY (2008) Research on thermal error modeling of machine tools based on Bayesian network. Dissertation, Zhejiang University, Hangzhou

  14. Kim SK, Cho DW (1997) Real-time estimation of temperature distribution in a ball-screw system. Int J Mach Tools Manuf 37(4):451–464

    Article  Google Scholar 

  15. Xu ZZ, Liu XJ, Choi CH et al (2012) A study on improvement of ball screw system positioning error with liquid-cooling. Int J Precis Eng Manuf 13(12):2173–2181

    Article  Google Scholar 

  16. Horejs O (2007) Thermo-mechanical model of ball screw with non-steady heat sources. In: International conference on thermal issues in emerging technologies-theory and applications, 3–6 January 2007, Cairo, Egypt, pp 126–130

  17. Mori M, Mizuguchi H, Fujishima M et al (2009) Design optimization and development of CNC lathe headstock to minimize thermal deformation. CIRP Ann Manuf Technol 58(1):331–334

    Article  Google Scholar 

  18. Sun L, Ren M, Hong H et al (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5/8):1267–1277

    Article  Google Scholar 

  19. Shi H, Ma C, Yang J et al (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71

    Article  Google Scholar 

  20. Xu YY, Zu L, Wang YY et al (2018) Theoretical analysis and experimental study of thermal deformation model of ball screw and its influence on positioning accuracy. Modul Mach Tool Autom Manuf Tech 1:1–3, 7

  21. Chen C, Qiu ZR, Li XF et al (2011) Temperature field model of ball screws used in servo systems. Optics Precis Eng 19(5):1151–1158

    Article  Google Scholar 

  22. Mayr J, Blaser P, Ryser A et al (2018) An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates. CIRP Ann 67(1):551–554

    Article  Google Scholar 

  23. Yang JG, Fan KG, Du ZC (2013) Technique of real-time error compensation on NC machine tools. China Machine Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51775277 and 51575272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hua Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, WH., Guo, YX., Zhou, HF. et al. Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine. Adv. Manuf. 8, 119–132 (2020). https://doi.org/10.1007/s40436-020-00293-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-020-00293-3

Keywords

Navigation