Skip to main content
Log in

An axial attention-BiLSTM-based method for predicting the migration of CNC machine tool spindle thermal error under varying working conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Spindle thermal error is a major factor affecting the machining accuracy of machine tools. The time-consuming experiments required to model the thermal error of each machine tool spindle makes exhaustive studies difficult. Therefore, it is critically important to develop a transferable spindle thermal error prediction model that ensures robustness and accuracy, which provides theoretical guidance for the thermal error compensation and accuracy improvement of different machine tools. To achieve this, this paper proposes a migratory prediction method based on spatial–temporal axial attention bidirectional long short-term memory (axial attention-BiLSTM) network to predict the thermal error of computer numerical control (CNC) machine tool spindles under varying working conditions. By analyzing the mechanism of spindle thermal error generation, the spindle system is divided into multiple temperature regions, and the importance of each region is automatically determined by using the spatial attention mechanism. At the same time, considering the historical dependence of thermal error, BiLSTM is used to fuse the previous and following time series information and determine the weights of different time steps by temporal attention mechanism to strengthen the times series memory of thermal error prediction. An axial attention-BiLSTM model for thermal error prediction is built based on the spindle test bench. Compared with the BiLSTM and long short-term memory (LSTM) models, this model shows better and more stable prediction performance when migrated to various working conditions of horizontal CNC grinding machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. Cirp Annals-Manuf Technol 61(2):771–791. https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  2. Jorgensen BR (1996) Robust modeling of high-speed spindle-bearing dynamics under operating conditions. Purdue University, West Lafayette

  3. Holkup T, Cao H, Kolar P, Altintas Y, Zeleny J (2010) Thermo-mechanical model of spindles. Cirp Annals-Manuf Technol 59(1):365–368. https://doi.org/10.1016/j.cirp.2010.03.021

    Article  Google Scholar 

  4. Zhang J, Feng P, Chen C, Yu D, Wu Z (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527. https://doi.org/10.1007/s00170-013-4939-4

    Article  Google Scholar 

  5. Guo Q, Yang J, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5–8):667–675. https://doi.org/10.1007/s00170-010-2520-y

    Article  Google Scholar 

  6. Liu JL, Ma C, Gui HQ, Wang SL (2022) Transfer learning-based thermal error prediction and control with deep residual LSTM network. Knowl-Based Syst 237. https://doi.org/10.1016/j.knosys.2021.107704

  7. Zhou ZC, Dai Y, Wang G, Li SK, Pang J, Zhan SQ (2022) Thermal displacement prediction model of SVR high-speed motorized spindle based on SA-PSO optimization. Case Stud Therm Eng 40. https://doi.org/10.1016/j.csite.2022.102551

  8. Li ZL, Wang QH, Zhu B, Wang BD, Zhu WM, Dai Y (2022) Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine. Case Stud Therm Eng 39:102432. https://doi.org/10.1016/j.csite.2022.102432

    Article  Google Scholar 

  9. Guo Q, Yang J (2009) Thermal error modeling on machine tools based on ant colony algorithm. J Shanghai Jiaotong Univ 43(5):803–806. https://doi.org/10.16183/j.cnki.jsjtu.2009.05.025

    Article  Google Scholar 

  10. Jiang H, Yang J, Yao X, Zhang Y, Yuan F (2013) Modeling of CNC machine tool spindle thermal distortion with LS-SVM based on bayesian inference. J Mech Eng 49(15):115–121. https://doi.org/10.3901/JME.2013.15.115

    Article  Google Scholar 

  11. Shi H, Ma C, Yang J, Zhao L, Mei X, Gong G (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71. https://doi.org/10.1016/j.ijmachtools.2015.07.003

    Article  Google Scholar 

  12. Tan B, Mao X, Liu H, Li B, He S, Peng F, Yin L (2014) A thermal error model for large machine tools that considers environmental thermal hysteresis effects. Int J Mach Tools Manuf 82–83:11–20. https://doi.org/10.1016/j.ijmachtools.2014.03.002

    Article  Google Scholar 

  13. Liu J, Ma C, Wang S (2020) Data-driven thermal error compensation of linear x-axis of worm gear machines with error mechanism modeling. Mech Mach Theory 153. https://doi.org/10.1016/S0890-6955(98)00062-5

  14. Liu K, Wu J, Liu H, Sun M, Wang Y (2021) Reliability analysis of thermal error model based on DBN and Monte Carlo method. Mech Syst Signal Process 146. https://doi.org/10.1016/j.ymssp.2020.107020

  15. Fujishima M, Narimatsu K, Irino N, Mori M, Ibaraki S (2019) Adaptive thermal displacement compensation method based on deep learning. Cirp J Manuf Sci Technol 25:22–25. https://doi.org/10.1016/j.cirpj.2019.04.002

    Article  Google Scholar 

  16. Wang K, Shen H, Yang C, Chen H (2019) Temperature sensing and two-stage integrated modeling of the thermal error for a computer-numerical control swiss-type turning center. Sens Mater 31(3):1007–1020. https://doi.org/10.18494/Sam.2019.2225

    Article  Google Scholar 

  17. Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45(4–5):455–465. https://doi.org/10.1016/j.ijmachtools.2004.09.004

    Article  Google Scholar 

  18. Zhu M, Yang Y, Feng X, Du Z, Yang J (2023) Robust modeling method for thermal error of CNC machine tools based on random forest algorithm. J Intell Manuf 34(4):2013–2026. https://doi.org/10.1007/s10845-021-01894-w

    Article  Google Scholar 

  19. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  20. Ma C, Gui H, Liu J (2023) Self learning-empowered thermal error control method of precision machine tools based on digital twin. J Intell Manuf 34(2):695–717. https://doi.org/10.1007/s10845-021-01821-z

    Article  Google Scholar 

  21. Lu Q, Zhu D, Wang M, Li M (2023) Digital twin-driven thermal error prediction for CNC machine tool spindle. Lubricants 11(5). https://doi.org/10.3390/lubricants11050219

  22. Liang Y, Li W, Lou P, Hu J (2022) Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory networks and fog-cloud architecture. J Manuf Syst 62:950–963. https://doi.org/10.1016/j.jmsy.2020.10.008

    Article  Google Scholar 

  23. Liu J, Ma C, Gui H, Wang S (2023) Intelligent digital-twin prediction and reverse control system architecture for thermal errors enabled by deep learning and cloud-edge computing. Expert Syst Appl 225. https://doi.org/10.1016/j.eswa.2023.120122

  24. Liu J, Ma C, Gui H, Wang S (2021) Thermally-induced error compensation of spindle system based on long short term memory neural networks. Appl Soft Comput 102. https://doi.org/10.1016/j.asoc.2021.107094

  25. Cheng Y, Zhang X, Zhang G, Jiang W, Li B (2022) Thermal error analysis and modeling for high-speed motorized spindles based on LSTM-CNN. Int J Adv Manuf Technol 121(5–6):3243–3257. https://doi.org/10.1007/s00170-022-09563-9

    Article  Google Scholar 

  26. Liu J, Ma C, Wang S, Wang S, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manuf 137:42–57. https://doi.org/10.1016/j.ijmachtools.2018.10.004

    Article  Google Scholar 

  27. Zahedi A, Movahhedy MR (2012) Thermo-mechanical modeling of high speed spindles. Sci Iran 19(2):282–293. https://doi.org/10.1016/j.scient.2012.01.004

    Article  Google Scholar 

  28. Harris TA (1991) Rolling bearing analysis. Wiley, New York

    Google Scholar 

  29. Yang H, Ni J (2003) Dynamic modeling for machine tool thermal error compensation. J Manuf Sci Eng Trans Asme 125(2):245–254. https://doi.org/10.1115/1.1557296

    Article  Google Scholar 

  30. Attia MH, Fraser S, Osman MOM (1999) On-line estimation of time-variant thermal load applied to machine tool structures using a s-domain inverse solution. Int J Mach Tools Manuf 39(6):985–1000. https://doi.org/10.1016/S0890-6955(98)00062-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and referees for helping to improve this article.

Funding

This work is supported by the Key Research and Development Program of Zhejiang Province (NO.2021C01008) and National Natural Science Foundation of China (NO.52075480, U22A6001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jiacheng Sun, Zhengyang Jiang, and Haoyang Mao. Experimental design and manuscript writing were guided by Zhenyu Liu, Chan Qiu, and Liang He. The first draft of the manuscript was written by Jiacheng Sun. Jianrong Tan and Zhenyu Liu contributed to funding acquisition.

Corresponding author

Correspondence to Zhenyu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Liu, Z., Qiu, C. et al. An axial attention-BiLSTM-based method for predicting the migration of CNC machine tool spindle thermal error under varying working conditions. Int J Adv Manuf Technol 130, 1405–1419 (2024). https://doi.org/10.1007/s00170-023-12759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12759-2

Keywords

Navigation