Skip to main content
Log in

Influence of machining parameters on dynamic errors in a hexapod machining cell

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Dynamic errors from the robotic machining process can negatively impact the accuracy of manufactured parts. Currently, effectively reducing dynamic errors in robotic machining remains a challenge due to the incomplete understanding of the relationship between machining parameters and dynamic errors, especially for hexapod machining cells. To address this topic, a dynamic error measurement strategy combining a telescoping ballbar, an unscented Kalman filter (UKF), and particle swarm optimization (PSO) was utilized in robotic machining. The machining parameters, including spindle speed, cutting depth, and feeding speed, were defined using the Taguchi method. Simultaneously, vibrations during machining were also systematically measured to fully comprehend the nature of dynamic errors. Experimental results indicate that dynamic errors in a hexapod machining cell (HMC) are significantly amplified in machining setups, ranging from 4 to 20 times greater compared to those of non-machining setups. These errors are particularly influenced by machining parameters, especially for spindle speed. Furthermore, the extracted dynamic errors exhibit comparable frequency distributions, such as spindle frequency and tool passing frequency, to the vibration signals obtained at the chosen sampling rate. This expands the application and enhances the comprehension of dynamic errors for spindle and cutting tool condition recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

UKF:

Unscented Kalman filter

PSO:

Particle swarm optimization

HMC:

Hexapod machining cell

CD :

Circular deviation

RD :

Radial deviation

DE :

Dynamic error

DTW :

Dynamic time warping

References

  1. Kubela T, Pochyly A, Singule V (2016) Assessment of industrial robots accuracy in relation to accuracy improvement in machining processes. In: 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), 25-28 Sept, pp 720-725. https://doi.org/10.1109/EPEPEMC.2016.7752083

  2. Joshi K, Melkote SN, Anderson M et al (2021) Investigation of cycle time behavior in the robotic grinding process. CIRP Ann-Manuf Sci Technol 35:315–322. https://doi.org/10.1016/j.cirpj.2021.06.021

    Article  Google Scholar 

  3. Pham MN, Champliaud H, Liu Z et al (2022) Parameterized finite element modeling and experimental modal testing for vibration analysis of an industrial hexapod for machining. Mech Mach Theory 167:1–26. https://doi.org/10.1016/j.mechmachtheory.2021.104502

    Article  Google Scholar 

  4. Schneider U, Drust M, Ansaloni M et al (2016) Improving robotic machining accuracy through experimental error investigation and modular compensation. Int J Adv Manuf Technol 85(1):3–15. https://doi.org/10.1007/s00170-014-6021-2

    Article  Google Scholar 

  5. Schneider U, Ansaloni M, Drust M et al (2013) Experimental Investigation of Sources of Error in Robot Machining. In: Neto P, Moreira AP (eds) Robotics in Smart Manufacturing. Springer Berlin Heidelberg, Berlin Heidelberg, pp 14–26

    Chapter  Google Scholar 

  6. Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tool Manufact 49(12):947–957. https://doi.org/10.1016/j.ijmachtools.2009.06.010

    Article  Google Scholar 

  7. Ni J, Dai R, Yue X et al (2022) Contribution ratio assessment of process parameters on robotic milling performance. Materials 15 (10). https://doi.org/10.3390/ma15103566

  8. Xu P, Gao Y, Yao X et al (2023) Influence of process parameters and robot postures on surface quality in robotic machining. Int J Adv Manuf Technol 124(7):2545–2561. https://doi.org/10.1007/s00170-022-10640-2

    Article  Google Scholar 

  9. Guo M, Ye Y, Jiang X et al (2020) Comprehensive effect of multi-parameters on vibration in high-speed precision milling. Int J Adv Manuf Technol 108(7):2187–2195. https://doi.org/10.1007/s00170-020-05441-4

    Article  Google Scholar 

  10. Hao D, Wang W, Liu Z et al (2019) Experimental study of stability prediction for high-speed robotic milling of aluminum. J Vib Control 26(7–8):387–398. https://doi.org/10.1177/1077546319880376

    Article  Google Scholar 

  11. Zhu Z, Tang X, Chen C et al (2022) High precision and efficiency robotic milling of complex parts: challenges, approaches and trends. Chin J Aeronaut 35(2):22–46. https://doi.org/10.1016/j.cja.2020.12.030

    Article  Google Scholar 

  12. Lyu D, Liu Q, Liu H et al (2020) Dynamic error of CNC machine tools: a state-of-the-art review. Int J Adv Manuf Technol 106(5):1869–1891. https://doi.org/10.1007/s00170-019-04732-9

    Article  Google Scholar 

  13. Qian D, Bi Q (2018) A dynamic machine tool circle test calibration method by R-test. MATEC Web of Conferences 249:02004. https://doi.org/10.1051/matecconf/201824902004

    Article  Google Scholar 

  14. Chen D, Zhou S, Dong L et al (2016) An investigation into error source identification of machine tools based on time-frequency feature extraction. Shock Vib 2016:1040942. https://doi.org/10.1155/2016/1040942

    Article  Google Scholar 

  15. Schmitz T, Ziegert J (2000) Dynamic evaluation of spatial CNC contouring accuracy. Precis Eng 24(2):99–118. https://doi.org/10.1016/S0141-6359(99)00034-3

    Article  Google Scholar 

  16. Liu C, Xiang S, Lu C et al (2020) Dynamic and static error identification and separation method for three-axis CNC machine tools based on feature workpiece cutting. Int J Adv Manuf Technol 107(5):2227–2238. https://doi.org/10.1007/s00170-020-05103-5

    Article  Google Scholar 

  17. Andolfatto L, Lavernhe S, Mayer JRR (2011) Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool. Int J Mach Tool Manufact 51(10):787–796. https://doi.org/10.1016/j.ijmachtools.2011.07.002

    Article  Google Scholar 

  18. Elvira-Ortiz DA, Romero-Troncoso RdJ, Jaen-Cuellar AY et al (2016) Vibration suppression for improving the estimation of kinematic parameters on industrial robots. Shock Vib 2016:6954012. https://doi.org/10.1155/2016/6954012

    Article  Google Scholar 

  19. Rahimi MH, Huynh HN, Altintas Y (2021) On-line chatter detection in milling with hybrid machine learning and physics-based model. CIRP Ann-Manuf Sci Technol 35:25–40. https://doi.org/10.1016/j.cirpj.2021.05.006

    Article  Google Scholar 

  20. Brecher C, Brozio M, Klatte M et al (2017) Application of an unscented Kalman filter for modeling multiple types of machine tool errors. Procedia CIRP 63:449–454. https://doi.org/10.1016/j.procir.2017.03.344

    Article  Google Scholar 

  21. ISO 230-4:2005 (2005) Test code for machine tools. Circular tests for numerically controlled machine tools. ISO, Geneva

    Google Scholar 

  22. Fesperman RR, Moylan SP, Vogl GW et al (2015) Reconfigurable data driven virtual machine tool: geometric error modeling and evaluation. CIRP Ann-Manuf Sci Technol 10:120–130. https://doi.org/10.1016/j.cirpj.2015.03.001

    Article  Google Scholar 

  23. Barnfather J, Goodfellow MJ, Abram T (2018) Achievable tolerances in robotic feature machining operations using a low-cost hexapod. Int J Adv Manuf Technol 95(1):1421–1436. https://doi.org/10.1007/s00170-017-1266-1

    Article  Google Scholar 

  24. Slamani M, Nubiola A, Bonev I (2012) Assessment of the positioning performance of an industrial robot. Ind Rob 39(1):57–68. https://doi.org/10.1108/01439911211192501

    Article  Google Scholar 

  25. Urrea C, Agramonte R (2021) Kalman filter: historical overview and review of its use in robotics 60 years after its creation. J Sens 2021:9674015. https://doi.org/10.1155/2021/9674015

    Article  Google Scholar 

  26. Kwon Y, Huang S, Park Y (2011) Enhancing e-quality for manufacture using Kalman filter calibrated visual robotic control. Robot Comput Integrated Manuf 27(5):902–909. https://doi.org/10.1016/j.rcim.2011.03.001

    Article  Google Scholar 

  27. Nazarahari M, Rouhani H (2021) A full-state robust extended Kalman filter for orientation tracking during long-duration dynamic tasks using magnetic and inertial measurement units. IEEE Trans Neural Syst Rehabil Eng 29:1280–1289. https://doi.org/10.1109/tnsre.2021.3093006

    Article  PubMed  Google Scholar 

  28. Merwe Rvd, Wan E (2001) The square-root unscented Kalman filter for state and parameter-estimation. In: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 7–11 May 2001, vol 3466, pp 3461–3464. https://doi.org/10.1109/ICASSP.2001.940586

  29. Julier SJ (2002) The scaled unscented transformation. In: Proceedings of the 2002 American Control Conference 8–10 May 2002, pp 4555–4559. https://doi.org/10.1109/ACC.2002.1025369

  30. Chatzis MN, Chatzi EN (2017) A discontinuous unscented Kalman filter for non-smooth dynamic problems. Front Built Environ 3. https://doi.org/10.3389/fbuil.2017.00056

  31. Dowson DC, Landau BV (1982) The Fréchet distance between multivariate normal distributions. J Multivar Anal 12(3):450–455. https://doi.org/10.1016/0047-259X(82)90077-X

    Article  Google Scholar 

  32. Kate RJ (2016) Using dynamic time warping distances as features for improved time series classification. Data Min Knowl Discov 30(2):283–312. https://doi.org/10.1007/s10618-015-0418-x

    Article  MathSciNet  Google Scholar 

  33. Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:931256. https://doi.org/10.1155/2015/931256

    Article  MathSciNet  Google Scholar 

  34. Lai X, Qin C, Gao W et al (2018) A state of charge estimator based extended Kalman filter using an electrochemistry-based equivalent circuit model for lithium-ion batteries. Appl Sci 8(9):1592. https://doi.org/10.3390/app8091592

    Article  CAS  Google Scholar 

  35. Jatoth RK, Rao DN, Kumar KS (2010) Particle swarm optimization aided unscented Kalman filter for ballistic target tracking. In: 2010 International Conference on Communication Control and Computing Technologies, pp 455–460. https://doi.org/10.1109/ICCCCT.2010.5670595

  36. Xing K, Bonev IA, Liu Z, Champliaud H (2023) Ballbar applications for machining and non-machining setups in a hexapod-based machining cell. Progress in Canadian Mechanical Engineering 6:315. https://doi.org/10.17118/11143/21054

  37. Grguras D, Kern M, Pusavec F (2019) Cutting performance of solid ceramic and carbide end milling tools in machining of nickel based alloy Inconel 718 and stainless steel 316L. Adv Prod Eng Manag 14(1):27–38. https://doi.org/10.14743/apem2019.1.309

    Article  Google Scholar 

  38. Lv D, Wang Y, Yu X (2020) Effects of cutting edge radius on cutting force, tool wear, and life in milling of SUS-316L steel. Int J Adv Manuf Technol 111(9):2833–2844. https://doi.org/10.1007/s00170-020-06286-7

    Article  Google Scholar 

  39. Tunc LT, Shaw J (2016) Investigation of the effects of Stewart platform-type industrial robot on stability of robotic milling. Int J Adv Manuf Technol 87(1):189–199. https://doi.org/10.1007/s00170-016-8420-z

    Article  Google Scholar 

  40. Payet M, Marchetti L, Tabarant M et al (2019) Corrosion mechanisms of 316L stainless steel in supercritical water: the significant effect of work hardening induced by surface finishes. Corros Sci 157:157–166. https://doi.org/10.1016/j.corsci.2019.05.014

    Article  CAS  Google Scholar 

  41. Sahoo DK, Nivas Chari A, Sivakrishna Reddy A (2020) Optimization & characterization of friction surfaced coatings of AA6063 aluminium alloy over AISI316 stainless steel substrate. Mater Today: Proceedings 23:565–572. https://doi.org/10.1016/j.matpr.2019.05.410

    Article  CAS  Google Scholar 

  42. Hajiahmadi S (2019) Burr size investigation in micro milling of stainless steel 316L. Int J Lightweight Mater Manuf 2(4):296–304. https://doi.org/10.1016/j.ijlmm.2019.07.004

    Article  Google Scholar 

  43. Chai T, Draxler R (2014) Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  ADS  Google Scholar 

  44. Liao M, Jin R, Ren H et al (2022) Orthogonal experimental design for the optimization of four additives in a model liquid infant formula to improve its thermal stability. LWT 163:113495. https://doi.org/10.1016/j.lwt.2022.113495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Mr. Mario Corbin, Mr. Joël Grignon, and Dr. Xavier Rimpault for their technical assistance in preparing and manufacturing hardware and fixtures for this study.

Funding

The authors received financial support from the Fonds de recherche du Québec – Nature et technologies (FRQNT) postdoctoral research scholarship and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, K., Bonev, I.A., Liu, Z. et al. Influence of machining parameters on dynamic errors in a hexapod machining cell. Int J Adv Manuf Technol 131, 1317–1334 (2024). https://doi.org/10.1007/s00170-024-12968-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-12968-3

Keywords

Navigation