Skip to main content
Log in

Effects of cutting edge radius on cutting force, tool wear, and life in milling of SUS-316L steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Cutting edge micro-geometry plays an important role in machining operations. An appropriate shape and size of the cutting edges improve wear resistance, tool life, and process reliability. This study presents an experimental exploration to understand the rounded cutting edge of solid carbide end mills with CrTiAlN coating on milling SUS-316L steel, and the tool performance in terms of cutting force, tool wear, and tool life is investigated. The designed cutting edge radius (CER) from 4 up to 15 μm is prepared by drag finishing (DF). The results have indicated that the CER are remarkably significant on the cutting performances. With the CER increased from 4 to 15 μm, the cutting force Fc and feed force Ff increased 23% and 56% at uncut chip thickness h = 0.2 mm, respectively. The wear test results showed that chipping is the primary failure of milling cutter. The tool wear mechanism was depicted through scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analysis. In conclusion, the highest tool life was obtained with nominal CER of 12 μm in milling of SUS-316L steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang WT, Biermann D, Aßmuth R, Arif AFM, Veldhuis SC (2020) Effects on tool performance of cutting edge prepared by pressurized air wet abrasive jet machining (PAWAJM). J Mater Process Technol 277. https://doi.org/10.1016/j.jmatprotec.2019.116456

  2. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann 63(2):631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  3. Li GC, Zhou HG, Jing XW, Tian GZ, Li L (2017) An intelligent wheel position searching algorithm for cutting tool grooves with diverse machining precision requirements. Int J Mach Tools Manuf 122:149–160. https://doi.org/10.1016/j.ijmachtools.2017.07.003

    Article  Google Scholar 

  4. Gong F, Zhao J, Jiang Y, Tao H, Li Z, Zang J (2017) Fatigue failure of coated carbide tool and its influence on cutting performance in face milling SKD11 hardened steel. Int J Refract Met Hard Mater 64:27–34. https://doi.org/10.1016/j.ijrmhm.2017.01.001

    Article  Google Scholar 

  5. Bouzakis KD, Bouzakis E, Skordaris G, Makrimallakis S, Tsouknidas A, Katirtzoglou G, Gerardis S (2011) Effect of PVD films wet micro-blasting by various Al2O3 grain sizes on the wear behaviour of coated tools. Surf Coat Technol 205:S128–S132. https://doi.org/10.1016/j.surfcoat.2011.03.046

    Article  Google Scholar 

  6. Uhlmann E, Oberschmidt D, Löwenstein A, Kuche Y (2016) Influence of cutting edge preparation on the performance of micro milling tools. Procedia CIRP 46:214–217. https://doi.org/10.1016/j.procir.2016.03.204

    Article  Google Scholar 

  7. Vipindas K, Anand KN, Mathew J (2018) Effect of cutting edge radius on micro end milling: force analysis, surface roughness, and chip formation. Int J Adv Manuf Technol 97(1–4):711–722. https://doi.org/10.1007/s00170-018-1877-1

    Article  Google Scholar 

  8. Bordin FM, Zeilmann RP (2014) Effect of the cutting edge preparation on the surface integrity after dry drilling. Procedia CIRP 13:103–107. https://doi.org/10.1016/j.procir.2014.04.018

    Article  Google Scholar 

  9. Bouzakis KD, Bouzakis E, Kombogiannis S, Makrimallakis S, Skordaris G, Michailidis N, Charalampous P, Paraskevopoulou R, M’Saoubi R, Aurich JC, Barthelmä F, Biermann D, Denkena B, Dimitrov D, Engin S, Karpuschewski B, Klocke F, Özel T, Poulachon G, Rech J, Schulze V, Settineri L, Srivastava A, Wegener K, Uhlmann E, Zeman P (2014) Effect of cutting edge preparation of coated tools on their performance in milling various materials. CIRP J Manuf Sci Technol 7(3):264–273. https://doi.org/10.1016/j.cirpj.2014.05.003

    Article  Google Scholar 

  10. Raj DS, Karunamoorthy L (2018) A new and comprehensive characterisation of tool wear in CFRP drilling using micro-geometry and topography studies on the cutting edge. J Manuf Process 32:839–856. https://doi.org/10.1016/j.jmapro.2018.04.014

    Article  Google Scholar 

  11. Li BX, Zhang S, Yan ZG, Zhang J (2018) Effect of edge hone radius on chip formation and its microstructural characterization in hard milling of AISI H13 steel. Int J Adv Manuf Technol 97(5):305–318. https://doi.org/10.1007/s00170-018-1933-x

    Article  Google Scholar 

  12. Wyen CF, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann 59(1):93–96. https://doi.org/10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  13. Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-Co inserts. CIRP J Manuf Sci Technol 5(2):108–126. https://doi.org/10.1016/j.cirpj.2012.03.004

    Article  Google Scholar 

  14. Uhlmann E, Oberschmidt D, Kuche Y, Löwenstein A (2014) Cutting edge preparation of micro milling tools. Procedia CIRP 14:349–354. https://doi.org/10.1016/j.procir.2014.03.083

    Article  Google Scholar 

  15. Albrecht P (1960) New developments in the theory of the metal-cutting process – part I. The ploughing process in metal cutting. J Eng Ind Trans ASME 82:348–358

    Article  Google Scholar 

  16. Thomsen EG, Lapsley JT, Grassi RC (1953) Deformation work absorbed by the workpiece during metal cutting. Trans ASME 75:591–603

    Google Scholar 

  17. Laakso SVA, Agmell M, Stahl JE (2018) The mystery of missing feed force-the effect of friction models, flank wear and ploughing on feed force in metal cutting simulations. J Manuf Process 33:268–277. https://doi.org/10.1016/j.jmapro.2018.05.024

    Article  Google Scholar 

  18. Biondani FG, Bissacco G (2019) Effect of cutting edge micro geometry on surface generation in ball end milling. CIRP Ann 68(1):571–574. https://doi.org/10.1016/j.cirp.2019.04.017

    Article  Google Scholar 

  19. Bouzakis KD, Charalampous P, Kotsanis T, Skordaris G, Bouzakis E, Denkena B, Breidenstein B, Aurich JC, Zimmermann M, Herrmann T, M’saoubi R (2017) Effect of HM substrates’ cutting edge roundness manufactured by laser machining and micro-blasting on the coated tools’ cutting performance. CIRP J Manuf Sci Technol 18:188–197. https://doi.org/10.1016/j.cirpj.2017.02.003

    Article  Google Scholar 

  20. Casto SL, Passannanti G, Ippolito R (1985) On the influence of the radius between face and flank on the tool life of sintered carbides. CIRP Ann 34(1):83–85

    Article  Google Scholar 

  21. Ventura CEH, Chaves HS, Campos Rubio JC, Abrão AM, Denkena B, Breidenstein B (2016) The influence of the cutting tool microgeometry on the machinability of hardened AISI 4140 steel. Int J Adv Manuf Technol 90(9–12):2557–2565. https://doi.org/10.1007/s00170-016-9582-4

    Article  Google Scholar 

  22. Cheung FY, Zhou ZF, Geddam A, Li KY (2008) Cutting edge preparation using magnetic polishing and its influence on the performance of high-speed steel drills. J Mater Process Technol 208:196–204. https://doi.org/10.1016/j.jmatprotec.2007.12.108

    Article  Google Scholar 

  23. Aurich JC, Zimmermann M, Leitz L (2010) The preparation of cutting edges using a marking laser. Prod Eng Res Dev 5(1):17–24. https://doi.org/10.1007/s11740-010-0275-9

    Article  Google Scholar 

  24. Deng JX, Zhou JT, Zhang H, Yan P (2011) Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels. Wear 270:520–527. https://doi.org/10.1016/j.wear.2011.01.006

    Article  Google Scholar 

  25. Sun FL, Li ZJ, Jiang DM, Chen B (1998) Adhering wear mechanism of cemented carbide cutter in the intervallic cutting of stainless steel. Wear 214(1):79–82

    Article  Google Scholar 

  26. Jiang XH, Kong XJ, Zhang ZY, Wu Z, Ding ZP, Guo MX (2020) Modeling the effects of undeformed chip volume (UCV) on residual stresses during the milling of curved thin-walled parts. Int J Mech Sci 167. https://doi.org/10.1016/j.ijmecsci.2019.105162

  27. Junior CADO, Diniz AE, Bertazzoli R (2014) Correlating tool wear, surface roughness and corrosion resistance in the turning process of super duplex stainless steel. J Braz Soc Mech Sci Eng 36(4):775–785. https://doi.org/10.1007/s40430-013-0119-6

    Article  Google Scholar 

  28. Maurel-pantel A, Fontaine M, Michel G, Thibaud S, Gelin JC (2013) Experimental investigations from conventional to high speed milling on a 304-L stainless steel. Int J Adv Manuf Technol 69(9–12):1–23. https://doi.org/10.1007/s00170-013-5159-7

    Article  Google Scholar 

  29. Özbek NA, Çiçek A, Gülesin M, Özbek O (2016) Effect of cutting conditions on wear performance of cryogenically treated tungsten carbide inserts in dry turning of stainless steel. Tribol Int 94:223–233. https://doi.org/10.1016/j.triboint.2015.08.024

    Article  Google Scholar 

  30. Bergmann B, Denkena B, Grove T, Picker T (2019) Chip formation of rounded cutting edges. Int J Precis Eng Manuf 20(1):37–44. https://doi.org/10.1007/s12541-019-00020-4

    Article  Google Scholar 

  31. Waldorf DJ, DeVor RE, Kapoor SG (1999) An evaluation of ploughing models for orthogonal machining. J Manuf Sci Eng 121(4):550–558. https://doi.org/10.1115/1.2833050

    Article  Google Scholar 

  32. Liu GJ, Zhou ZC, Qian X, Pang WH, Li HG, Tan YG (2018) Wear mechanism of cemented carbide tool in high speed milling of stainless steel. Chin J Mech Eng (Engl Ed) 31:98. https://doi.org/10.1186/s10033-018-0298-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejin Lv or Yongguo Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, D., Wang, Y. & Yu, X. Effects of cutting edge radius on cutting force, tool wear, and life in milling of SUS-316L steel. Int J Adv Manuf Technol 111, 2833–2844 (2020). https://doi.org/10.1007/s00170-020-06286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06286-7

Keywords

Navigation