Skip to main content

Advertisement

Log in

A review on surface texturing of zirconia ceramics for dental applications

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Zirconia ceramic is an ideal dental restoration material owing to its good biocompatibility, superior physical behaviors, and excellent aesthetic properties. However, peri-implant inflammation and excessive occlusal surface wear are critical issues that hinder the clinical application of zirconia ceramic dentures. The surface texturing technique is an unique means to improve the surface properties of products, such as biocompatibility. This paper provides a detailed overview of the definition and development of surface texturing techniques. A comprehensive review is conducted on the machining mechanisms and features of common texture preparation techniques, such as laser texturing and ultrasonic vibration texturing. The mechanisms of surface textures on the tribological behaviors, wettability, and antibacterial behaviors of specimens such as restorations are deeply discussed. The limitations of current studies on surface texturing techniques of dental zirconia ceramics and the future prospects are outlined. The review can help scientists improve the currently available cost-effective texture preparation process and develop high-performance denture restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Ultrasonic vibration amplitude (mm)

CA:

Contact angle (°)

D:

Groove depth (mm)

LST:

Laser surface texturing

MRR:

Material removal rate

PCD:

Polycrystalline diamond

R S :

Ultrasonic speed ratio

TZP:

Tetragonal zirconia polycrystal

UV:

Ultraviolet

UVAG:

Ultrasonic vibration-assisted grinding

UVAM:

Ultrasonic vibration-assisted milling

UVAT:

Ultrasonic vibration-assisted turning

V f :

Feed rate (mm/min)

W:

Groove widths (mm)

Y2O3 :

Yttria

ZrO2 :

Zirconia

f :

Ultrasonic frequency (Hz)

f t :

Feed per tooth (μm/z)

n :

Spindle speed (rpm)

r :

Surface roughness factor

μ :

Friction coefficient

θ :

Contact angle

t-ZrO2 :

Tetragonal zirconia

3Y-TZP:

3 mol% yttria–stabilized tetragonal zirconia polycrystal

References

  1. Traini T, Gherlone E, Parabita SF, Caputi S, Piattelli A (2014) Fracture toughness and hardness of a Y-TZP dental ceramic after mechanical surface treatments. Clin Oral Invest 18(3):707–714. https://doi.org/10.1007/s00784-013-1018-z

    Article  Google Scholar 

  2. Denry I, Kelly JR (2014) Emerging ceramic-based materials for dentistry. J Dent Res 93(12):1235–1242. https://doi.org/10.1177/0022034514553627

  3. Shahmiri R, Standard OC, Hart JN, Sorrell CC (2018) Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. J Prost Dent 119(1):36–46. https://doi.org/10.1016/j.prosdent.2017.07.009

    Article  CAS  Google Scholar 

  4. Abd El-Ghany OS, Sherief AH (2016) Zirconia based ceramics, some clinical and biological aspects. Fut Dent J 2(2):55–64. https://doi.org/10.1016/j.fdj.2016.10.002

    Article  Google Scholar 

  5. Grech J, Antunes E (2016) Zirconia in dental prosthetics: a literature review. J Mater Res Technol 8(5):4956–4964. https://doi.org/10.1016/j.jmrt.2019.06.043

    Article  CAS  Google Scholar 

  6. Li H, Zhou Z (2001) Wear behaviour of human teeth in dry and artificial saliva conditions. Wear 249(10–11):980–984

    Article  CAS  Google Scholar 

  7. Zheng J, Zhou Z (2007) Friction and wear behavior of human teeth under various wear conditions. Tribol Int 40(2):278–284. https://doi.org/10.1016/S0043-1648(01)00835-3

    Article  Google Scholar 

  8. Zheng J, Li Y, Shi M, Zhang Y, Qian L, Zhou Z (2013) Microtribological behaviour of human tooth enamel and artificial hydroxyapatite. Tribol Int 63:177–185. https://doi.org/10.1016/j.triboint.2012.04.019

    Article  CAS  Google Scholar 

  9. D’Incau E, Couture C, Maureille B (2012) Human tooth wear in the past and the present: tribological mechanisms, scoring systems, dental and skeletal compensations. Arch Oral Biol 57(3):214–229. https://doi.org/10.1016/j.archoralbio.2011.08.021

    Article  PubMed  Google Scholar 

  10. Zou L, Cherukara G, Hao P, Seymour K, Samarawickrama D (2009) Geometrics of tooth wear. Wear 266(5–6):605–608. https://doi.org/10.1016/j.wear.2008.04.062

    Article  CAS  Google Scholar 

  11. Fernandez-Garcia E, Chen X, Gutierrez-Gonzalez CF, Fernandez A, Lopez-Esteban S, Aparicio C (2015) Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications. J Dent 43(9):1162–1174. https://doi.org/10.1016/j.jdent.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Arslan A, Masjuki H, Kalam M, Varman M, Mufti R, Mosarof M, Khuong L, Quazi M (2016) Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance: a review. Crit Rev in Solid State 41(6):447–481

    Article  CAS  Google Scholar 

  13. Xu J, Ji M, Li L, Wu Y, Yu Q, Chen M (2022) Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing. Ceram Int 48(3):3702–3710. https://doi.org/10.1016/j.ceramint.2021.10.152

    Article  CAS  Google Scholar 

  14. Ji M, Xu J, Chen M, El Mansori M (2020) Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing. Ceram Int 46(6):7161–7169. https://doi.org/10.1016/j.ceramint.2019.11.210

    Article  CAS  Google Scholar 

  15. Shum PW, Zhou ZF, Li KY (2013) Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribol Int 65:259–264. https://doi.org/10.1016/j.triboint.2013.01.012

    Article  CAS  Google Scholar 

  16. Schreck S, Zum Gahr KH (2005) Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties. Appl Surf Sci 247(1–4):616–622. https://doi.org/10.1016/j.apsusc.2005.01.173

    Article  ADS  CAS  Google Scholar 

  17. Patel D, Jain V, Ramkumar J (2018) Micro texturing on metallic surfaces: State of the art. Proc Inst Mech Eng Pt B - J Eng Manuf 232(6):941–964. https://doi.org/10.1177/0954405416661583

    Article  Google Scholar 

  18. Niketh S, Samuel G (2017) Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy. J Clean Prod 167:253–270. https://doi.org/10.1016/j.jclepro.2017.08.178

    Article  CAS  Google Scholar 

  19. Wu Z, Bao H, Xing Y, Liu L (2021) Tribological characteristics and advanced processing methods of textured surfaces: a review. Int J Adv Manuf Technol 114(5):1241–1277. https://doi.org/10.1007/s00170-021-06954-2

    Article  Google Scholar 

  20. Tang Y, Tang H, Wan Z, Yuan W, Lu L, Li Z (2017) Research progress of hydrodynamic lubrication of surface texture. J South China Univ Technol 45(9):1–11. https://doi.org/10.3969/j.issn.1000-565X.2017.09.001

    Article  CAS  Google Scholar 

  21. Demir A, Maressa P, Previtali B (2013) Fibre laser texturing for surface functionalization. Phys Procedia 41:759–768. https://doi.org/10.1016/j.phpro.2013.03.145

    Article  ADS  CAS  Google Scholar 

  22. Etsion I, Kligerman Y, Halperin G (1999) Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol Trans 42(3):511–516. https://doi.org/10.1080/10402009908982248

    Article  CAS  Google Scholar 

  23. Iyengar V, Nayak B, More K, Meyer H III, Biegalski M, Li J, Gupta M (2011) Properties of ultrafast laser textured silicon for photovoltaics. Sol Energy Mat Sol C 95(10):2745–2751. https://doi.org/10.1016/j.solmat.2011.04.011

    Article  CAS  Google Scholar 

  24. Coblas DG, Fatu A, Maoui A, Hajjam M (2015) Manufacturing textured surfaces: State of art and recent developments. Proc Inst Mech Eng Pt J - J Eng Tribol 229(1):3–29. https://doi.org/10.1177/1350650114542242

    Article  CAS  Google Scholar 

  25. Harrison RG (1912) The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat Rec 6(4):181–193. https://doi.org/10.1002/ar.1090060404

    Article  Google Scholar 

  26. Van Brakel R, Cune MS, Van Winkelhoff AJ, De Putter C, Verhoeven JW, Van der Reijden W (2011) Early bacterial colonization and soft tissue health around zirconia and titanium abutments: an in vivo study in man. Clin Oral Implan Res 22(6):571–577. https://doi.org/10.1111/j.1600-0501.2010.02005.x

    Article  Google Scholar 

  27. Lima E, Koo H, Vacca Smith A, Rosalen P, Del Bel Cury AA (2008) Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. Clin Oral Implan Res 19(8):780–785. https://doi.org/10.1111/j.1600-0501.2008.01524.x

    Article  Google Scholar 

  28. Mao B, Siddaiah A, Liao Y, Menezes PL (2020) Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review. J Manuf Process 53:153–173. https://doi.org/10.1016/j.jmapro.2020.02.009

    Article  Google Scholar 

  29. Cunha W, Carvalho O, Henriques B, Silva FS, Özcan M, Souza JC (2022) Surface modification of zirconia dental implants by laser texturing. Laser Med Sci 37:77–93. https://doi.org/10.1007/s10103-021-03475-y

    Article  Google Scholar 

  30. Delgado-Ruiz RA, Abboud M, Romanos G, Aguilar-Salvatierra A, Gomez-Moreno G, Calvo-Guirado JL (2015) Peri-implant bone organization surrounding zirconia-microgrooved surfaces circularly polarized light and confocal laser scanning microscopy study. Clin Oral Impla 26(11):1328–37. https://doi.org/10.1111/clr.12461

    Article  Google Scholar 

  31. Calvo-Guirado JL, Aguilar Salvatierra A, Gargallo-Albiol J, Delgado-Ruiz RA, Maté Sanchez JE, Satorres-Nieto M (2015) Zirconia with laser-modified microgrooved surface vs titanium implants covered with melatonin stimulates bone formation Experimental study in tibia rabbits. Clin Oral Impla 26(12):1421–9. https://doi.org/10.1111/clr.12472

    Article  Google Scholar 

  32. Menci G, Demir AG, Waugh DG, Lawrence J, Previtali B (2019) Laser surface texturing of β-Ti alloy for orthopaedics: effect of different wavelengths and pulse durations. Appl Surf Sci 489:175–186. https://doi.org/10.1016/j.apsusc.2019.05.111

    Article  ADS  CAS  Google Scholar 

  33. Dashtbozorg B, Li X, Romano JM, Garcia-Giron A, Sammons RL, Dimov S, Dong H (2020) A study on the effect of ultrashort pulsed laser texturing on the microstructure and properties of metastable S phase layer formed on AISI 316L surfaces. Appl Surf Sci 511:145557. https://doi.org/10.1016/j.apsusc.2020.145557

    Article  CAS  Google Scholar 

  34. Ahuir-Torres JI, Arenas M, Perrie W, De Damborenea JJO, Li E (2018) Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys. Opt Laser Eng 103:100–109. https://doi.org/10.1016/j.optlaseng.2017.12.004

    Article  Google Scholar 

  35. Allahyari E, Nivas JJJ, Valadan M, Fittipaldi R, Vecchione A, Parlato L, Bruzzese R, Altucci C, Amoruso S (2019) Plume shielding effects in ultrafast laser surface texturing of silicon at high repetition rate in air. Appl Surf Sci 488:128–133. https://doi.org/10.1016/j.apsusc.2019.05.219

    Article  ADS  CAS  Google Scholar 

  36. Meng R, Deng JX, Duan R, Liu YY, Zhang GL (2019) Modifying tribological performances of AISI 316 stainless steel surfaces by laser surface texturing and various solid lubricants. Opt Laser Technol 109:401–411. https://doi.org/10.1016/j.optlastec.2018.08.020

    Article  ADS  CAS  Google Scholar 

  37. Qi XW, Wang H, Dong Y, Fan BL, Zhang WL, Zhang Y, Ma J, Zhou Y (2019) Experimental analysis of the effects of laser surface texturing on tribological properties of PTFE/Kevlar fabric composite weave structures. Tribol Int 135:104–111. https://doi.org/10.1016/j.triboint.2019.02.036

    Article  CAS  Google Scholar 

  38. Li X, Li YH, Tong Z, Ma Q, Ni YQ, Dong GN (2019) Enhanced lubrication effect of gallium-based liquid metal with laser textured surface. Tribol Int 129:407–415. https://doi.org/10.1016/j.triboint.2018.08.037

    Article  CAS  Google Scholar 

  39. Dai F, Wen D, Zhang Y, Lu J, Ren X, Zhou J (2015) Micro-dimple array fabricated on surface of Ti6Al4V with a masked laser ablation method in air and water. Mater Des 84:178–184. https://doi.org/10.1016/j.matdes.2015.06.137

    Article  CAS  Google Scholar 

  40. Guo J, Li Y, Lu H, Qin L, Li Y, Dong G (2018) An effective method of edge deburring for laser surface texturing of Co-Cr-Mo alloy. Int Adv Manuf Technol 94(1–4):1491–1503. https://doi.org/10.1007/s00170-017-0962-1

    Article  Google Scholar 

  41. Zhang H, Liu Y, Li BT, Hua M, Dong GN (2020) Improving processing quality and tribological behavior of laser surface textures using oil layer method. Tribol Int 150:106353. https://doi.org/10.1016/j.triboint.2020.106353

    Article  CAS  Google Scholar 

  42. Han J, Zhang F, Van Meerbeek B, Vleugels J, Braem A, Castagne S (2021) Laser surface texturing of zirconia-based ceramics for dental applications: a review. Mater Sci Eng C Mater Biol Appl 123:112034. https://doi.org/10.1016/j.msec.2021.112034

    Article  CAS  PubMed  Google Scholar 

  43. Enomoto T, Sugihara T (2010) Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann - Manuf Technol 59(1):597–600. https://doi.org/10.1016/j.cirp.2010.03.130

    Article  Google Scholar 

  44. Sajjady S, Abadi HNH, Amini S, Nosouhi R (2016) Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Mater Des 93:311–323. https://doi.org/10.1016/j.matdes.2015.12.119

    Article  CAS  Google Scholar 

  45. Zhu L, Ni C, Yang Z, Liu C (2019) Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti–6Al–4V. Precis Eng 57:229–243. https://doi.org/10.1016/j.precisioneng.2019.04.010

    Article  Google Scholar 

  46. Lu H, Zhu L, Yang Z, Yan B, Hao Y, Qin S (2021) Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling. Int J Mech Sci 208:106681. https://doi.org/10.1016/j.ijmecsci.2021.106681

    Article  Google Scholar 

  47. Jiang J, Sun S, Wang D, Yang Y, Liu X (2020) Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process. Int J Mach Tools Manuf 156:103595. https://doi.org/10.1016/j.ijmachtools.2020.103595

    Article  Google Scholar 

  48. Ijaola AO, Bamidele EA, Akisin CJ, Bello IT, Oyatobo AT, Abdulkareem A, Farayibi PK, Asmatulu E (2020) Wettability transition for laser textured surfaces: a comprehensive review. Surf Interfaces 21:100802. https://doi.org/10.1016/j.surfin.2020.100802

    Article  CAS  Google Scholar 

  49. Liu XF, Wu DB, Zhang JH, Hu XY, Cui P (2019) Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mater Process Technol 267:186–195. https://doi.org/10.1016/j.jmatprotec.2018.12.021

  50. Zhang C, Guo P, Ehmann KF, Li Y (2016) Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics 67:30–40. https://doi.org/10.1016/j.ultras.2015.12.016

    Article  PubMed  Google Scholar 

  51. Shen XH, Shi YL, Zhang JH, Zhang QJ, Tao GC, Bai LJ (2020) Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling. Int J Mech Sci 167:105267. https://doi.org/10.1016/j.ijmecsci.2019.105267

    Article  Google Scholar 

  52. Li L, Xu J, Ji M, Yin Y, Chen M (2022) On crack suppression mechanisms of ultrasonic elliptical vibration cutting of 3Y-TZP ceramics. Ceram Int 48(19):28308–28326. https://doi.org/10.1016/j.ceramint.2022.06.138

    Article  CAS  Google Scholar 

  53. Natarajan Y, Murugesan PK, Mohan M, Khan SALA (2020) Abrasive water jet machining process: a state of art of review. J Manuf Process 49:271–322. https://doi.org/10.1016/j.jmapro.2019.11.030

    Article  Google Scholar 

  54. Shi L, Fang Y, Dai Q, Huang W, Wang X (2018) Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Mater Manuf Process 33(13):1415–1421. https://doi.org/10.1080/10426914.2017.1401723

    Article  CAS  Google Scholar 

  55. Pal VK, Choudhury S (2014) Fabrication and analysis of micro-pillars by abrasive water jet machining. Proc Mater Sci 6:61–71. https://doi.org/10.1016/j.mspro.2014.07.008

    Article  CAS  Google Scholar 

  56. Pal VK, Choudhury S (2016) Fabrication of texturing tool to produce array of square holes for EDM by abrasive water jet machining. Int J Adv Manuf Technol 85(9):2061–2071. https://doi.org/10.1007/s00170-015-7875-7

    Article  Google Scholar 

  57. Melentiev R, Fang F (2020) Fabrication of micro-channels on Co–Cr–Mo joints by micro-abrasive jet direct writing. J Manuf Process 56:667–677. https://doi.org/10.1016/j.jmapro.2020.05.022

    Article  Google Scholar 

  58. Geng Z, Shao T (2015) Microstructure and tribological behavior of stripe patterned Ti0. 6Al0. 4N thin coatings prepared by masked deposition. Surf Coat Technol 283:364–372. https://doi.org/10.1016/j.mspro.2014.07.008

    Article  CAS  Google Scholar 

  59. Chen P, La Y (2018) Microstructure and tribological behavior of stripe patterned TiN film prepared with filtered cathodic vacuum arc deposition (FCVAD). Adv Eng Mater 20(3):1700700. https://doi.org/10.1002/adem.201700700

    Article  CAS  Google Scholar 

  60. He D, He C, Li W, Shang L, Wang L, Zhang G (2020) Tribological behaviors of in-situ textured DLC films under dry and lubricated conditions. Appl Surf Sci 525:146581. https://doi.org/10.1016/j.apsusc.2020.146581

    Article  CAS  Google Scholar 

  61. Hernández-Castellano PM, Benítez-Vega A, Díaz-Padilla N, Ortega-García F, Socorro-Perdomo P, Marrero-Alemán M, Salguero J (2017) Design and manufacture of structured surfaces by electroforming. Procedia Manuf 13:402–409. https://doi.org/10.1016/j.promfg.2017.09.030

  62. Becker E, Ehrfeld W, Hagmann P, Maner A, Münchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4(1):35–56. https://doi.org/10.1016/0167-9317(86)90004-3

    Article  CAS  Google Scholar 

  63. Wang Y, Yi F, Zhang T, Liu J, Wang B, Zhou Y (2017) Design and property study of micro-slot optics. Opt Commun 386:14–21. https://doi.org/10.1016/j.optcom.2016.11.020

    Article  ADS  CAS  Google Scholar 

  64. Yin Q, Guo Q, Wang Z, Chen Y, Duan H, Cheng P (2020) 3D-printed bioinspired Cassie-Baxter wettability for controllable microdroplet manipulation. ACS Appl Mater Interfaces 13(1):1979–1987. https://doi.org/10.1021/acsami.0c18952

    Article  CAS  PubMed  Google Scholar 

  65. An H, Wang S, Li D, Peng Z, Chen S (2021) Self-cleaning performance of the micropillar-arrayed surface and its micro-scale mechanical mechanism. Langmuir 37(33):10079–10088

    Article  CAS  PubMed  Google Scholar 

  66. Yuan S, Lin NM, Zou JJ, Liu ZQ, Wang ZX, Tian LH, Qin L, Zhang HX, Wang ZH, Tang B, Wu YC (2019) Effect of laser surface texturing (LST) on tribological behavior of double glow plasma surface zirconizing coating on Ti6Al4V alloy. Surf Coat Technol 368:97–109. https://doi.org/10.1021/acs.langmuir.1c01398

  67. Basher MK, Mishan R, Biswas S, Hossain MK, Akand MAR, Matin MA (2019) Study and analysis the Cu nanoparticle assisted texturization forming low reflective silicon surface for solar cell application. AIP Adv 9(7):075118

    Article  ADS  Google Scholar 

  68. Shimizu T, Kan H, Messaoudi H, Vollertsen F, Yang M (2019) Impact of geometrical parameters of micro-textured DLC on tribological properties under dry sliding friction. Manuf Rev 6:18. https://doi.org/10.1063/1.5109003

    Article  CAS  Google Scholar 

  69. Baino F, Montealegre MA, Minguella-Canela J, Vitale-Brovarone C (2019) Laser surface texturing of alumina/zirconia composite ceramics for potential use in hip joint prosthesis. Coatings 9(6):369. https://doi.org/10.3390/coatings9060369

    Article  CAS  Google Scholar 

  70. Zhang HB, Marshall CL (2019) Atomic layer deposition: catalytic preparation and modification technique for the next generation. Chinese J Catal 40(9):1311–1323. https://doi.org/10.1016/S1872-2067(19)63321-8

    Article  CAS  Google Scholar 

  71. Zavos A, Nikolakopoulos PG (2015) Tribological characterization of smooth and artificially textured coated surfaces using block-on-ring tests. FME Trans 43(3):191–197. https://doi.org/10.5937/fmet1503191Z

    Article  Google Scholar 

  72. Byun JW, Shin HS, Kwon MH, Kim BH, Chu CN (2010) Surface texturing by micro ECM for friction reduction. Int J Precis Eng Manuf 11(5):747–753. https://doi.org/10.1007/s12541-010-0088-y

    Article  Google Scholar 

  73. Moura C, Pereira R, Buciumeanu M, Carvalho O, Bartolomeu F, Nascimento R, Silva F (2017) Effect of laser surface texturing on primary stability and surface properties of zirconia implants. Ceram Int 43(17):15227–15236. https://doi.org/10.1016/j.ceramint.2017.08.058

    Article  CAS  Google Scholar 

  74. Zimmerman JH, Guleryuz CG, Krzanowski JE (2008) Fabrication and tribological properties of titanium nitride coatings incorporating solid lubricant microreservoirs. Surf Coat Technol 202(10):2023–2032. https://doi.org/10.1016/j.surfcoat.2007.08.038

    Article  CAS  Google Scholar 

  75. Moon HS, Kim JY, Jin HM, Lee WJ, Choi HJ, Mun JH, Choi YJ, Cha SK, Kwon SH, Kim SO (2014) Atomic layer deposition assisted pattern multiplication of block copolymer lithography for 5 nm scale nanopatterning. Adv Funct Mater 24(27):4343–4348. https://doi.org/10.1002/adfm.201304248

    Article  CAS  Google Scholar 

  76. Geng Z, Shao TM (2015) Microstructure and tribological behavior of stripe patterned Ti0.6Al0.4N thin coatings prepared by masked deposition. Surf Coat Technol 283:364–372. https://doi.org/10.1016/j.surfcoat.2015.09.045

  77. Oh Y, Chung S, Lee M (2004) Optimization of thickness uniformity in electrodeposition onto a patterned substrate. Mater Trans 45(10):3005–3010. https://doi.org/10.2320/matertrans.45.3005

    Article  CAS  Google Scholar 

  78. Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51(12):966–972

  79. Pettersson U, Jacobson S (2007) Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribol Int 40(2):355–359. https://doi.org/10.1016/j.ijmachtools.2011.08.013

    Article  CAS  Google Scholar 

  80. Lu X, Khonsari M (2007) An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol Lett 27(2):169–176. https://doi.org/10.1007/s11249-007-9217-x

    Article  Google Scholar 

  81. Iacono F, Pirani C, Generali L, Sassatelli P, Nucci C, Gandolfi M, Prati CJGIdE (2016) Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments. Procedia Manuf 30(1):64–68. https://doi.org/10.1016/j.gien.2016.04.006

  82. Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann - Manuf Technol 60(1):153–156. https://doi.org/10.1016/j.cirp.2011.03.104

  83. Maharana HS, Kumar R, Murty SVSN, Ramkumar J, Mondal K (2019) Surface micro-texturing of dual phase steel and copper by combining laser machining and electrochemical dissolution. J Mater Process Technol 273:116260. https://doi.org/10.1016/j.jmatprotec.2019.116260

  84. Patel DS, Jain VK, Shrivastava A, Ramkumar J (2019) Electrochemical micro texturing on flat and curved surfaces: simulation and experiments. Int J Adv Manuf Technol 100(5–8):1269–1286. https://doi.org/10.1007/s00170-016-9700-3

  85. Chun KH, Jin DS, Kim SH, Lee ES (2017) Comparison between wire mesh and plate electrodes during wide-pattern machining on invar fine sheet using through-mask electrochemical micromachining. J Mech Sci Technol 31(4):1851–1859. https://doi.org/10.1007/s12206-017-0332-9

    Article  Google Scholar 

  86. Nakano M, Ando Y (2011) Recent studies on the application of microfabrication technologies for improving tribological properties. Lubr Sci 23(3):99–117. https://doi.org/10.1002/ls.135

    Article  Google Scholar 

  87. Xing Y, Luo C, Wan Y, Huang P, Wu Z, Zhang K (2021) Formation of bionic surface textures composed by micro-channels using nanosecond laser on Si3N4-based ceramics. Ceram Int 47(9):12768–12779

    Article  CAS  Google Scholar 

  88. Zhang H, Hua M, Dong G-n, Zhang D-y, Chin K-S (2016) A mixed lubrication model for studying tribological behaviors of surface texturing. Tribol Int 93:583–592. https://doi.org/10.1016/j.triboint.2015.03.027

    Article  Google Scholar 

  89. Ryk G, Kligerman Y, Etsion I (2002) Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol Trans 45(4):444–449. https://doi.org/10.1080/10402000208982572

  90. Zhang J, Chen Y, Xu B, Chao Q, Zhu Y, Huang X (2018) Effect of surface texture on wear reduction of the tilting cylinder and the valve plate for a high-speed electro-hydrostatic actuator pump. Wear 414:68–78. https://doi.org/10.1016/j.wear.2018.08.003

    Article  CAS  Google Scholar 

  91. Wu Z, Deng J, Chen Y, Xing Y, Zhao J (2012) Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V. Int J Adv Manuf Technol 62(9):943–951. https://doi.org/10.1007/s00170-011-3853-x

  92. Zheng K, Li Z, Liao W, Xiao X (2017) Friction and wear performance on ultrasonic vibration assisted grinding dental zirconia ceramics against natural tooth. J Braz Soc Mech Sci 39(3):833–843. https://doi.org/10.1007/s40430-016-0531-9

    Article  CAS  Google Scholar 

  93. Zhao L, Zhang B, Yang Liu, Liu Y (2021) State of the art for improving tribological performance based on of surface texturing technology. Tribology 42(1):202–24. https://doi.org/10.16078/j.tribology.2020263

    Article  CAS  Google Scholar 

  94. Greiner C, Schäfer M, Popp U, Gumbsch P (2014) Contact splitting and the effect of dimple depth on static friction of textured surfaces. ACS Appl Mater Interfaces 6(11):7986–7990. https://doi.org/10.1021/am500879m

    Article  CAS  PubMed  Google Scholar 

  95. Galda L, Pawlus P, Sep J (2009) Dimples shape and distribution effect on characteristics of Stribeck curve. Tribol Int 42(10):1505–1512. https://doi.org/10.1016/j.triboint.2009.06.001

    Article  CAS  Google Scholar 

  96. Zhang H, Hua M, Dong G-z, Zhang D-y, Chen W-j, Dong G-n (2017) Optimization of texture shape based on genetic algorithm under unidirectional sliding. Tribol Int 115:222–232. https://doi.org/10.1016/j.triboint.2017.05.017

    Article  Google Scholar 

  97. He B, Chen W, Jane Wang Q (2008) Surface texture effect on friction of a microtextured poly (dimethylsiloxane)(PDMS). Tribol Lett 31:187–197. https://doi.org/10.1007/s11249-008-9351-0

    Article  CAS  Google Scholar 

  98. Etsion I, Sher E (2009) Improving fuel efficiency with laser surface textured piston rings. Tribol Int 42(4):542–547. https://doi.org/10.1016/j.triboint.2008.02.015

    Article  CAS  Google Scholar 

  99. Mourier L, Mazuyer D, Lubrecht A, Donnet C (2006) Transient increase of film thickness in micro-textured EHL contacts. Tribol Int 39(12):1745–1756. https://doi.org/10.1016/j.triboint.2006.02.037

    Article  CAS  Google Scholar 

  100. Kaneta M, Kanada T, Nishikawa H (1997) Optical interferometric observations of the effects of a moving dent on point contact EHL. Tribology Series 32:69–79. https://doi.org/10.1016/S0167-8922(08)70437-1

    Article  CAS  Google Scholar 

  101. He X, Zhong L, Wang G, Liao Y, Liu Q (2015) Tribological behavior of femtosecond laser textured surfaces of 20CrNiMo/beryllium bronze tribo-pairs. Ind Lubr Tribol 67(6):630–638. https://doi.org/10.1108/ILT-03-2015-0042

    Article  Google Scholar 

  102. Liu W, Ni H, Chen H, Wang P (2019) Numerical simulation and experimental investigation on tribological performance of micro-dimples textured surface under hydrodynamic lubrication. Int J Mech Sci 163:105095. https://doi.org/10.1016/j.ijmecsci.2019.105095

    Article  Google Scholar 

  103. Shimizu J, Nakayama T, Watanabe K, Yamamoto T, Onuki T, Ojima H, Zhou L (2020) Friction characteristics of mechanically microtextured metal surface in dry sliding. Tribol Int 149:105634. https://doi.org/10.1016/j.triboint.2019.02.042

    Article  CAS  Google Scholar 

  104. Ye Y, Wang C, Wang Y, Zhao W, Li J, Yao Y (2015) A novel strategy to enhance the tribological properties of Cr/GLC films in seawater by surface texturing. Surf Coat Technol 280:338–346. https://doi.org/10.1016/j.surfcoat.2015.09.019

  105. Wang L, Guo S, Wei Y, Yuan G, Geng H (2019) Optimization research on the lubrication characteristics for friction pairs surface of journal bearings with micro texture. Meccanica 54:1135–1148. https://doi.org/10.1007/s11012-019-01015-1

    Article  Google Scholar 

  106. Wakuda M, Yamauchi Y, Kanzaki S, Yasuda Y (2003) Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254(3–4):356–363. https://doi.org/10.1016/S0043-1648(03)00004-8

    Article  CAS  Google Scholar 

  107. Wang Z, Li Y-B, Bai F, Wang C-W, Zhao Q-Z (2016) Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing. Opt Laser Technol 81:60–66. https://doi.org/10.1016/j.optlastec.2016.01.034

    Article  ADS  CAS  Google Scholar 

  108. Suh M-s, Chae Y-h, Kim S-s, Hinoki T, Kohyama A (2010) Effect of geometrical parameters in micro-grooved crosshatch pattern under lubricated sliding friction. Tribol Int 43(8):1508–1517. https://doi.org/10.1016/j.triboint.2010.02.012

    Article  CAS  Google Scholar 

  109. Faulkner D, Jackson C, Lunn R, Schlische R, Shipton Z, Wibberley C, Withjack M (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32(11):1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009

    Article  ADS  Google Scholar 

  110. Schuh JK, Ewoldt RH (2016) Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact. Tribol Int 97:490–498. https://doi.org/10.1016/j.triboint.2016.01.016

    Article  Google Scholar 

  111. Han J, Zhang F, Van Meerbeek B, Vleugels J, Braem A, Castagne S (2021) Laser surface texturing of zirconia-based ceramics for dental applications: a review. Mater Sci Eng 123:112034. https://doi.org/10.1016/j.msec.2021.112034

    Article  CAS  Google Scholar 

  112. Young T III (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87. https://doi.org/10.1098/rspl.1800.0095

    Article  ADS  Google Scholar 

  113. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  114. Yilbas B (2015) Laser treatment of zirconia surface for improved surface hydrophobicity. J Alloy Compd 625:208–215. https://doi.org/10.1016/j.jallcom.2014.11.069

    Article  CAS  Google Scholar 

  115. Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  116. Schünemann FH, Galárraga-Vinueza ME, Magini R, Fredel M, Silva F, Souza JC, Zhang Y, Henriques B (2019) Zirconia surface modifications for implant dentistry. Mater Sci Eng 98:1294–1305. https://doi.org/10.1016/j.msec.2019.01.062

    Article  CAS  Google Scholar 

  117. Gentleman MM, Gentleman E (2014) The role of surface free energy in osteoblast–biomaterial interactions. Int Mater Rev 59(8):417–429. https://doi.org/10.1179/1743280414Y.0000000038

  118. Yeo I-S, Kim H-Y, Lim KS, Han J-S (2012) Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs 35(10):762–772. https://doi.org/10.5301/ijao.5000154

    Article  CAS  PubMed  Google Scholar 

  119. Zhao M, Tian S, Yang Wu, Wei Li, Zhao X (2019) Effects of texture parameters on surface hydrophobicity of silicone rubber composite insulator. China Surf Eng 32(1):12–21. https://doi.org/10.11933/j.issn.1007−9289.20181012001

    Article  Google Scholar 

  120. Tang J, Chen X, Zhao B (2020) A research on the micro texture ultrasonic vibration milling system. J Appl Acoust 39(06):8. https://doi.org/10.11684/j.issn.1000-310X.2020.06.011

    Article  Google Scholar 

  121. Wang B, Hua Y, Ye Y, Chen R, Li Z (2017) Transparent superhydrophobic solar glass prepared by fabricating groove-shaped arrays on the surface. Appl Surf Sci 426:957–964. https://doi.org/10.1016/j.apsusc.2017.07.169

    Article  ADS  CAS  Google Scholar 

  122. Li K, Du J, Liu L, Ma L, Pang M (2021) One-step preparation of hydrophobic surface of cemented carbide by ethanol-assisted laser. Surfe Technol 50(7):90–6. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.07.008

    Article  CAS  Google Scholar 

  123. Pang M, Zhai S, Feng Q, Zhang Q, Ma L (2021) Liquid-phase assisted laser preparation of cemented carbide surface textures and study on their tribological properties. Tribology 42(5):1001–11. https://doi.org/10.16078/j.tribology.2021200

    Article  CAS  Google Scholar 

  124. Jing X, Pu Z, Zheng S, Wang F, Qi H (2020) Nanosecond laser induced microstructure features and effects thereof on the wettability in zirconia. Ceram Int 46(15):24173–24182. https://doi.org/10.1016/j.ceramint.2020.06.197

    Article  CAS  Google Scholar 

  125. Stallard CP, McDonnell K, Onayemi O, O’Gara J, Dowling D (2012) Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases 7(1):31. https://doi.org/10.1007/s13758-012-0031-0

    Article  CAS  PubMed  Google Scholar 

  126. Cheng Y, Feng G, Moraru CI (2019) Micro-and nanotopography sensitive bacterial attachment mechanisms: a review. Front Microbiol 10:191. https://doi.org/10.3389/fmicb.2019.00191

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nanduru VSPS, Ramakrishna NS, Babu RS, Babu PD, Marimuthu P, Miryala S, Srinandan C (2021) Laser surface texturing inhibits biofilm formation. Mater Chem Phys 271:124909. https://doi.org/10.1016/j.matchemphys.2021.124909

    Article  CAS  Google Scholar 

  128. Wassmann T, Kreis S, Behr M, Buergers R (2017) The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent 3(1):1–11. https://doi.org/10.1186/s40729-017-0093-3

    Article  Google Scholar 

  129. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10(7):2907–2918. https://doi.org/10.1016/j.actbio.2014.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gupta MK, Korkmaz ME (2023) A conceptual framework for sustainability impact assessment in machining bohler tool steel under hBN-enriched nano cutting fluids environment. Sustain Mater Technol 37:e00669. https://doi.org/10.1016/j.susmat.2023.e00669

    Article  CAS  Google Scholar 

  131. Gupta MK, Niesłony P, Sarikaya M, Korkmaz ME, Kuntoğlu M, Królczyk GM (2023) Studies on geometrical features of tool wear and other important machining characteristics in sustainable turning of aluminium alloys. Int J Precis Eng Manuf - Green Technol 10:943–957. https://doi.org/10.1007/s40684-023-00501-y

    Article  Google Scholar 

  132. Tijing LD, Ruelo MTG, Amarjargal A, Pant HR, Park C-H, Kim DW, Kim CS (2012) Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem Eng J 197:41–48. https://doi.org/10.1016/j.cej.2012.05.005

    Article  CAS  Google Scholar 

Download references

Funding

The work is financially supported by the National Natural Science Foundation of China (Grant No. 52175425).

Author information

Authors and Affiliations

Authors

Contributions

Youkang Yin conducted the literature survey and wrote the manuscript. Jinyang Xu and Ming Chen contributed to the conception of the study and reviewed the manuscript.

Corresponding author

Correspondence to Jinyang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Xu, J. & Chen, M. A review on surface texturing of zirconia ceramics for dental applications. Int J Adv Manuf Technol 130, 5109–5135 (2024). https://doi.org/10.1007/s00170-024-12948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-12948-7

Keywords

Navigation