Skip to main content
Log in

State of the art of research studies on machining processes by French research network Manufacturing’21

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

For 20 years now, the French machining activities have been federated around the Manufacturing’21 group. The activities of this group cover all the issues related to mechanical manufacturing of machines, robots, tool path, and analysis of the cutting process.. This review article is interested in this last part: the analysis of the cutting process. The article tries to make a review of the machining activities made during the past years by focusing on several points. The first one is the behaviour of materials by addressing the cutting process in the primary zone, the tribology in machining and the surface integrity. Secondly, this article reviews the work on tool wear analysis. This section begins with the work that explains wear phenomena. This is followed by work on tool wear, and finally by models. This article ends with a part in which the cutting assistance is discussed where the laser assistance, the high pressure and the cryogenic assistance are exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Abbreviations

BUL:

Built-up layer

CBN:

Cubic boron nitride

CCD:

Charge couple device

CNC:

Computer numerical control

CO2 :

Carbon dioxide

CVD:

Chemical vapour deposit

DIC:

Differential image correlation

EBSD:

Electron backscatter diffusion

EPMA:

Electron probe microanalysis

FEM:

Finite element method

Fn:

Normal force

Fc:

Cutting force in cutting speed direction

FFT:

Fast Fourier transform

fz:

Feed

HP:

High pressure (for machining)

HSS:

High-speed steel

IR:

Infrared

JC:

Johnson Cook

LAM:

Laser-assisted machining

LN2:

Liquid nitrogen

MQL:

Minimum quantity of lubricant

OHFC:

Oxygen free high conductivity

PCBN:

Polycrystalline cubic boron nitride

PCD:

Polycrystalline diamond

PVD:

Physical vapour deposit

Sa:

Arithmetical mean height of a surface

SEM:

Scanning electron microscope

SPD:

Severe plastic deformation

T :

Temperature

Tamb:

Room temperature

TEM:

Transmission electron microscopy

TCR:

Thermal contact resistance

Vinc:

Incursion speed

VIS-IR:

Visible and infrared

Vc:

Cutting speed

Vt:

Tangential speed

WC:

Tungsten carbide

References

  1. Abdel-Aal HA, Nouari M, El Mansori M (2009) Influence of thermal conductivity on wear when machining titanium alloys. Tribol Int 42:359–372

    Article  CAS  Google Scholar 

  2. Abdel-Aal HA, Nouari M, Mansori ME (2008) The effect of thermal property degradation on wear of WC-CO inserts in dry cutting. Wear 265:1670–1679. https://doi.org/10.1016/j.wear.2008.04.004

    Article  CAS  Google Scholar 

  3. Abdelali HB, Claudin C, Rech J, Salem WB, Kapsa P, Dogui A (2012) Experimental characterization of friction coefficient at the tool–chip–workpiece interface during dry cutting of AISI 1045. Wear 286:108–115. https://doi.org/10.1016/j.wear.2011.05.030

    Article  CAS  Google Scholar 

  4. Abdelali HB, Courbon C, Rech J, Ben Salem W, Dogui A, Kapsa P (2011) Identification of a friction model at the tool-chip-workpiece interface in dry machining of a AISI 1045 steel with a TiN coated carbide tool. J Tribol 133. https://doi.org/10.1115/1.4004879

  5. Abroug F, Pessard E, Germain G, Morel F (2018) A probabilistic approach to study the effect of machined surface states on HCF behavior of a AA7050 alloy. Int J Fatigue 116:473–489. https://doi.org/10.1016/j.ijfatigue.2018.06.048

    Article  CAS  Google Scholar 

  6. Abroug F, Pessard E, Germain G, Morel F (2018) HCF of AA7050 alloy containing surface defects: study of the statistical size effect. Int J Fatigue 110:81–94

    Article  CAS  Google Scholar 

  7. Arif R, Fromentin G, Rossi F, Marcon B (2020) Investigations on strain hardening during cutting of heat-resistant austenitic stainless steel. J Manuf Sci Eng 142(5):051005. https://doi.org/10.1115/1.4046612

    Article  Google Scholar 

  8. Artozoul J, Lescalier C, Bomont O, Dudzinski D (2014) Extended infrared thermography applied to orthogonal cutting: mechanical and thermal aspects. Appl Therm Eng 64:441–452. https://doi.org/10.1016/j.applthermaleng.2013.12.057

    Article  Google Scholar 

  9. Asad M, Girardin F, Mabrouki T, Rigal J-F (2008) Dry cutting study of an aluminium alloy (A2024–T351): a numerical and experimental approach. Int J Mater Form 1:499–502. https://doi.org/10.1007/s12289-008-0150-9

    Article  Google Scholar 

  10. Atlati S, Haddag B, Nouari M, Moufki A (2015) Effect of the local friction and contact nature on the built-up edge formation process in machining ductile metals. Tribol Int 90:217–227. https://doi.org/10.1016/j.triboint.2015.04.024

    Article  CAS  Google Scholar 

  11. Atlati S, Moufki A, Nouari M, Haddag B (2017) Interaction between the local tribological conditions at the tool–chip interface and the thermomechanical process in the primary shear zone when dry machining the aluminum alloy AA2024–T351. Tribol Int 105:326–333. https://doi.org/10.1016/j.triboint.2016.10.006

    Article  CAS  Google Scholar 

  12. Axel G, Valiorgue F, Courbon C, Rech J, Masciantonio U (2014) A first step towards a tribological approach to investigate cutting tool wear. Presented at the Key Engineering Materials, Trans Tech Publications Ltd, pp. 452–459. https://doi.org/10.4028/www.scientific.net/KEM.611-612.452

  13. Ayed Y, Germain G (2018) High-pressure water-jet-assisted machining of Ti555-3 titanium alloy: investigation of tool wear mechanisms. Int J Adv Manuf Technol 96:845–856. https://doi.org/10.1007/s00170-018-1661-2

    Article  Google Scholar 

  14. Ayed Y, Germain G, Ammar A, Furet B (2015) Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy. Precis Eng 42:294–301. https://doi.org/10.1016/j.precisioneng.2015.06.004

    Article  Google Scholar 

  15. Ayed Y, Germain G, Ammar A, Furet B (2013) Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 titanium alloy under high-pressure water jet assistance. Wear 305:228–237

    Article  CAS  Google Scholar 

  16. Ayed Y, Germain G, Melsio AP, Kowalewski P (2016) Effect of supply conditions of liquid nitrogen on the cryogenic assisted machining of the Ti64 titanium alloy. In: HSM-High Speed Machining Conference, Metz France

  17. Bahi S, Nouari M, Moufki A, El Mansori M, Molinari A (2012) Hybrid modelling of sliding–sticking zones at the tool–chip interface under dry machining and tool wear analysis. Wear 286:45–54. https://doi.org/10.1016/j.wear.2011.05.001

    Article  CAS  Google Scholar 

  18. Bahi S, Nouari M, Moufki A, El Mansori M, Molinari A (2011) A new friction law for sticking and sliding contacts in machining. Tribol Int 44:764–771. https://doi.org/10.1016/j.triboint.2011.01.007

    Article  Google Scholar 

  19. Baili M, Wagner V, Dessein G, Sallaberry J, Lallement D (2011) An experimental investigation of hot machining with induction to improve Ti-5553 machinability. Trans Tech Publications Ltd, Presented at the Applied mechanics and Materials, pp 67–76

    Google Scholar 

  20. Baizeau T, Campocasso S, Fromentin G, Besnard R (2017) Kinematic field measurements during orthogonal cutting tests via DIC with double-frame camera and pulsed laser lighting. Exp Mech 57:581–591. https://doi.org/10.1007/s11340-016-0248-9

    Article  CAS  Google Scholar 

  21. Baizeau T, Campocasso S, Fromentin G, Rossi F, Poulachon G (2015) Effect of rake angle on strain field during orthogonal cutting of hardened steel with c-BN tools. Procedia Cirp 31:166–171. https://doi.org/10.1016/j.procir.2015.03.089

    Article  Google Scholar 

  22. Baizeau T, Campocasso S, Rossi F, Poulachon G, Hild F (2016) Cutting force sensor based on digital image correlation for segmented chip formation analysis. J Mater Process Technol 238:466–473. https://doi.org/10.1016/j.jmatprotec.2016.07.016

    Article  CAS  Google Scholar 

  23. Barelli F, Wagner V, Laheurte R et al (2017) Orthogonal cutting of TA6V alloys with chamfered tools: Analysis of tool–chip contact lengths. Proc Inst Mech Eng, Plan B: J Eng Manuf 231(13):2384–2395. https://doi.org/10.1177/0954405416629589

    Article  CAS  Google Scholar 

  24. Battaglia J, Puigsegur L, Cahuc O (2005) Estimated temperature on a machined surface using an inverse approach. Exp Heat Transf 18:13–32

    Article  ADS  CAS  Google Scholar 

  25. Bensouilah H, Aouici H, Meddour I, Yallese MA, Mabrouki T, Girardin F (2016) Performance of coated and uncoated mixed ceramic tools in hard turning process. Measurement 82:1–18

    Article  ADS  Google Scholar 

  26. Biček M, Dumont F, Courbon C, Pušavec F, Rech J, Kopač J (2012) Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel. J Mater Process Technol 212:2609–2618. https://doi.org/10.1016/j.jmatprotec.2012.07.022

    Article  CAS  Google Scholar 

  27. Bierla A, Fromentin G, Minfray C, Martin J-M, Le Mogne T, Genet N (2012) Mechanical and physico-chemical study of sulfur additives effect in milling of high strength steel. Wear 286:116–123. https://doi.org/10.1016/j.wear.2011.05.007

    Article  CAS  Google Scholar 

  28. Blanchet F (2015) Etude de la coupe en perçage par le biais d’essais élémentaires en coupe orthogonale : application aux composites carbone-époxy, PhD Thesis, Toulouse

  29. Blanchet F, Lachaud F, Piquet R, Landon Y (2020) Experimental study of orthogonal cutting of unidirectional CFRP laminates. Int J Mach Mach Mater 22:454–486

    Google Scholar 

  30. Bonnardel Q, Wagner V, Dessein G, Dutilh V, Mandrile S (2017) Effects of cutting parameters over turning of UDIMET\textlesssup\textgreater®\textless/sup\textgreater 720 superalloy in a broaching process simulation. In: Procedia CIRP. https://doi.org/10.1016/j.procir.2017.03.323

  31. Bonnardel Q, Wagner V, Dessein G, Dutilh V, Mandrile S (2017) Effects of cutting parameters over turning of UDIMET® 720 superalloy in a broaching process simulation. Procedia CIRP 58:572–577. https://doi.org/10.1016/j.procir.2017.03.323

    Article  Google Scholar 

  32. Bonnet C, Rech J, Poulachon G (2020) Characterization of friction coefficient for simulating drilling contact for titanium TiAl6V4 alloy. CIRP J Manuf Sci Technol 29:130–137

    Article  Google Scholar 

  33. Bonnet C, Valiorgue F, Rech J, Claudin C, Hamdi H, Bergheau J, Gilles P (2008) Identification of a friction model—application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool. Int J Mach Tools Manuf 48:1211–1223. https://doi.org/10.1016/j.ijmachtools.2008.03.011

    Article  Google Scholar 

  34. Bono A, Dorlin T, Costes J-P, Fromentin G, Karaouni H (2016) Investigations on the Flank Wear and Modelling of the Contact Radius Effect in Turning of Ti6Al4 V Titanium Alloy. Procedia CIRP 46:468–471. https://doi.org/10.1016/j.procir.2016.04.050

    Article  Google Scholar 

  35. Bouacha K, Yallese MA, Mabrouki T, Rigal J-F (2010) Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int J Refract Met Hard Mater 28:349–361. https://doi.org/10.1016/j.ijrmhm.2009.11.011

    Article  CAS  Google Scholar 

  36. Boubaker HB, Ayed Y, Mareau C, Germain G (2018) On the formation of adiabatic shear bands in titanium alloy Ti17 under severe loading conditions. AIP Conf Proc 1960(1):070004. https://doi.org/10.1063/1.5034900

  37. Boubaker HB, Mareau C, Ayed Y, Germain G, Tidu A (2020) Impact of the initial microstructure and the loading conditions on the deformation behavior of the Ti17 titanium alloy. J Mater Sci 55:1765–1778. https://doi.org/10.1007/s10853-019-04014-5

    Article  ADS  CAS  Google Scholar 

  38. Bouzakis K, Bouzakis E, Kombogiannis S, Makrimallakis S, Skordaris G, Michailidis N, Charalampous P, Paraskevopoulou R, M’Saoubi R, Aurich J (2014) Effect of cutting edge preparation of coated tools on their performance in milling various materials. CIRP J Manuf Sci Technol 7:264–273

    Article  Google Scholar 

  39. Boyer H-F, Koppka F, Ranc N, Lorong P (2012) Identification of the heat input during dry or MQL machining. In: 9th International Conference of High Speed Machining - HSM 2012, Conference of High Speed Machining, Espagne

  40. Boyer H-F, Ranc N, Frabolot M, Koppka F, Lorong P (2012) Simulating the heat distortiion of a cast iron brake disc during dry machining, 7ème Assises MUGV. Saint- Etienne, France, p 10

  41. Braham T, Germain G, Robert R, Lebrun J, Auger S (2009) High pressure water jet assisted machining of duplex steel: machinability and tool life. Presented at the 12th CIRP Conference on Modelling of Machining Operations, Donostia-San Sebastiân, Spanien. https://doi.org/10.1007/s12289-010-0818-9

  42. Braham-Bouchnak T (2010). Study of extreme stress behavior and machinability of a new aeronautical titanium alloy: the ti555–3 (PhD Thesis). HESAM ParisTech

  43. Braham-Bouchnak T, Germain G, Morel A, Lebrun J-L (2013) The influence of laser assistance on the machinability of the titanium alloy Ti555-3. Int J Adv Manuf Technol 68:2471–2481. https://doi.org/10.1007/s00170-013-4855-7

    Article  Google Scholar 

  44. Cabanettes F, Faverjon P, Sova A, Dumont F, Rech J (2017) MQL machining: from mist generation to tribological behavior of different oils. Int J Adv Manuf Technol 90:1119–1130. https://doi.org/10.1007/s00170-016-9436-0

    Article  Google Scholar 

  45. Cabanettes F, Rolland J, Dumont F, Rech J, Dimkovski Z (2016) Influence of minimum quantity lubrication on friction characterizing tool–aluminum alloy contact. ASME J Tribol 138(2):021107. https://doi.org/10.1115/1.4031990

  46. Calatoru V, Balazinski M, Mayer J, Paris H, L’Espérance G (2008) Diffusion wear mechanism during high-speed machining of 7475–T7351 aluminum alloy with carbide end mills. Wear 265:1793–1800

    Article  CAS  Google Scholar 

  47. Camelin A, Naisson P, Poulachon G, D’Acunto A, Atieh S (2022) Experimental analysis of subsurface integrity during fine turning of OFE copper for radiofrequency cavity manufacturing. J Mater Process Technol 302:117483. https://doi.org/10.1016/j.jmatprotec.2021.117483

    Article  CAS  Google Scholar 

  48. Chaabani S, Arrazola PJ, Ayed Y, Madariaga A, Tidu A, Germain G (2020) surface integrity when machining inconel 718 using conventional lubrication and carbon dioxide coolant. Procedia Manuf 47:530–534. https://doi.org/10.1016/j.promfg.2020.04.150

    Article  Google Scholar 

  49. Chaabani S, Arrazola PJ, Ayed Y, Madariaga A, Tidu A, Germain G (2020) Comparison between cryogenic coolants effect on tool wear and surface integrity in finishing turning of Inconel 718. J Mater Process Technol 285:116780. https://doi.org/10.1016/j.jmatprotec.2020.116780

    Article  CAS  Google Scholar 

  50. Chaabani S, Rodriguez I, Cuesta M, Ayed Y, Arrazola PJ, Germain G (2019) Tool wear and cutting forces when machining inconel 718 under cryogenic conditions: liquid nitrogen and carbon dioxide. Presented at the AIP Conference Proceedings, Proceedings of the 22nd International Esaform Conference On Material Forming: ESAFORM 2019, Victoria-Gasteiz, Spain. https://doi.org/10.1063/1.5112610

  51. Claudin C, Mondelin A, Rech J, Fromentin G (2010) Effects of a straight oil on friction at the tool–workmaterial interface in machining. Int J Mach Tools Manuf 50:681–688. https://doi.org/10.1016/j.ijmachtools.2010.04.013

    Article  Google Scholar 

  52. Claudin C, Poulachon G, Lambertin M (2008) Correlation between drill geometry and mechanical forces in MQL conditions. Mach Sci Technol 12:133–144. https://doi.org/10.1080/10910340801918275

    Article  CAS  Google Scholar 

  53. Claudin C, Rech J, Grzesik W, Zalisz S (2008) Characterization of the frictional properties of various coatings at the tool/chip/workpiece interfaces in dry machining of AISI 4140 steel. Int J Mater Form 1:511–514. https://doi.org/10.1007/s12289-008-0172-3

    Article  Google Scholar 

  54. Clavier F, Valiorgue F, Courbon C, Dumas M, Rech J, Van Robaeys A, Lefebvre F, Brosse A, Karaouni H (2020) Impact of cutting tool wear on residual stresses induced during turning of a 15–5 PH stainless steel. Procedia CIRP 87:107–112. https://doi.org/10.1016/j.procir.2020.02.074

    Article  Google Scholar 

  55. Corduan N, Himbert T, Poulachon G, Dessoly M, Lambertin M, Vigneau J, Payoux B (2003) Wear mechanisms of new tool materials for Ti-6Al-4V high performance machining. CIRP Ann - Manuf Technol 52:73–76. https://doi.org/10.1016/S0007-8506(07)60534-4

    Article  Google Scholar 

  56. Costes J-P, Guillet Y, Poulachon G, Dessoly M (2007) Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int J Mach Tools Manuf 47:1081–1087. https://doi.org/10.1016/j.ijmachtools.2006.09.031

    Article  Google Scholar 

  57. Courbon C, Arrieta I, Cabanettes F, Rech J, Arrazola P-J (2020) The contribution of microstructure and friction in broaching Ferrite-Pearlite steels. CIRP Ann 69:57–60. https://doi.org/10.1016/j.cirp.2020.04.023

    Article  Google Scholar 

  58. Courbon C, Fabre D, Methon G, Giovenco A, Cabanettes F, Rech J (2021) A 3D modeling strategy to predict efficiently cutting tool wear in longitudinal turning of AISI 1045 steel. CIRP Ann 70:57–60. https://doi.org/10.1016/j.cirp.2021.04.071

    Article  Google Scholar 

  59. Courbon C, Fallqvist M, Hardell J, M׳Saoubi R, Prakash B (2015) Adhesion tendency of PVD TiAlN coatings at elevated temperatures during reciprocating sliding against carbon steel. Wear, 20th Int Conf Wear Mater 330–331:209–222. https://doi.org/10.1016/j.wear.2015.01.026

    Article  CAS  Google Scholar 

  60. Courbon C, Kramar D, Krajnik P, Pusavec F, Rech J, Kopac J (2009) Investigation of machining performance in high-pressure jet assisted turning of Inconel 718: an experimental study. Int J Mach Tools Manuf 49:1114–1125

    Article  Google Scholar 

  61. Courbon C, Mabrouki T, Rech J, Mazuyer D, D’Eramo E (2013) On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045: formation mechanisms and influence on the cutting process. Appl Therm Eng 50:1311–1325

    Article  CAS  Google Scholar 

  62. Courbon C, Mabrouki T, Rech J, Mazuyer D, Perrard F, D’Eramo E (2014) Further insight into the chip formation of ferritic-pearlitic steels: microstructural evolutions and associated thermo-mechanical loadings. Int J Mach Tools Manuf 77:34–46. https://doi.org/10.1016/j.ijmachtools.2013.10.010

    Article  Google Scholar 

  63. Courbon C, Mabrouki T, Rech J, Mazuyer D, Perrard F, D’Eramo E (2013b). Metallurgical aspects of material behaviour in cutting of AISI 1045. Presented at the Key Engineering Materials, Trans Tech Publications Ltd, pp. 2085–2092. https://doi.org/10.4028/www.scientific.net/KEM.554-557.2085

  64. Courbon C, Pusavec F, Dumont F, Rech J, Kopac J (2014) Influence of cryogenic lubrication on the tribological properties of Ti6Al4V and Inconel 718 alloys under extreme contact conditions. Lubr Sci 26:315–326. https://doi.org/10.1002/ls.1254

    Article  CAS  Google Scholar 

  65. Courbon C, Pusavec F, Dumont F, Rech J, Kopac J (2013) Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—application to the context of machining with carbide tools. Tribol Int 66:72–82. https://doi.org/10.1016/j.triboint.2013.04.010

    Article  CAS  Google Scholar 

  66. Courbon C, Sajn V, Kramar D, Rech J, Kosel F, Kopac J (2011) Investigation of machining performance in high pressure jet assisted turning of Inconel 718: a numerical model. J Mater Process Technol 211:1834–1851

    Article  CAS  Google Scholar 

  67. de Eguilaz ER, Rech J, Arrazola P (2010) Characterization of friction coefficient and heat partition coefficient between an AISI4140 steel and a TiN-coated carbide–influence of (Ca, Mn, S) steel’s inclusions. Proc. Inst. Mech Eng Part J J Eng Tribol 224:1115–1127. https://doi.org/10.1243/13506501JET818

    Article  Google Scholar 

  68. Delebarre C, Wagner V, Paris JY, Dessein G, Denape J, Gurt-Santanach J (2017) Tribological characterization of a labyrinth-abradable interaction in a turbo engine application. Wear 370–371. https://doi.org/10.1016/j.wear.2016.11.007

  69. Denguir L, Besnard A, Fromentin G, Poulachon G, Zhu X (2016) Flank wear prediction in milling AISI 4140 based on cutting forces PCA for different cutting edge preparations. Int J Mach Mach Mater 18:273–287

    Google Scholar 

  70. Denguir L, Outeiro J, Fromentin G, Vignal V, Besnard R (2016) Orthogonal cutting simulation of OFHC copper using a new constitutive model considering the state of stress and the microstructure effects. Procedia CIRP 46:238–241. https://doi.org/10.1016/j.procir.2016.03.208

    Article  Google Scholar 

  71. Desaigues J-E, Lescalier C, Bomont-Arzur A, Dudzinski D, Bomont O (2016) Experimental study of built-up layer formation during machining of high strength free-cutting steel. J Mater Process Technol 236:204–215

    Article  CAS  Google Scholar 

  72. Duchosal A, Serra R, Leroy R (2014) Numerical study of the inner canalization geometry optimization in a milling tool used in micro quantity lubrication. Mech Ind 15:435–442. https://doi.org/10.1051/meca/2014050

    Article  CAS  Google Scholar 

  73. Duchosal A, Serra R, Leroy R (2014) Static numerical simulation of oil mist particle size effects on a range of internal channel geometries of a cutting tool used in MQL strategy. Int J Eng Sci Innov Tech (IJESIT) 3(1)

  74. Duchosal A, Serra R, Leroy R, Hamdi H (2015) Numerical optimization of the minimum quantity lubrication parameters by inner canalizations and cutting conditions for milling finishing process with Taguchi method. J Clean Prod 108:65–71. https://doi.org/10.1016/j.jclepro.2015.07.126

    Article  CAS  Google Scholar 

  75. Ducobu F, Arrazola P-J, Riviere-Lorphevre E, Filippi E (2015) Finite element prediction of the tool wear influence in Ti6Al4V machining. Procedia Cirp 31:124–129. https://doi.org/10.1016/j.procir.2015.03.056

    Article  Google Scholar 

  76. Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) Experimental and numerical investigation of the uncut chip thickness reduction in Ti6Al4V orthogonal cutting. Meccanica 52:1577–1592

    Article  Google Scholar 

  77. Ducobu F, Rivière-Lorphèvre E, Filippi E (2014) Numerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cutting. Int J Mech Sci 81:77–87. https://doi.org/10.1016/j.ijmecsci.2014.02.017

    Article  Google Scholar 

  78. Dutilh V, Dessein G, Alexis J, Perrin G (2010) Links between machining parameters and surface integrity in drilling Ni-superalloy. Trans Tech Publications Ltd, Presented at the Advanced Materials Research, pp 171–178

    Google Scholar 

  79. Dutilh V, Popa A, Dessein G, Alexis J, Perrin G (2010) Impact of disturbed drilling conditions on the surface integrity of a Nickel-base superalloy. In: CIRP ICME ’10 - 7th CIRP International Conference on Intelligent computation in manufacturing engineering, 23 June 2010 - 25 June 2010 (Capri (Gulf of Naples), Italy)

  80. Egana A, Rech J, Arrazola P (2012) Characterization of friction and heat partition coefficients during machining of a TiAl6V4 titanium alloy and a cemented carbide. Tribol Trans 55:665–676. https://doi.org/10.1080/10402004.2012.692007

    Article  CAS  Google Scholar 

  81. Faverjon P, Rech J, Leroy R (2013) Influence of minimum quantity lubrication on friction coefficient and work-material adhesion during machining of cast aluminum with various cutting tool substrates made of polycrystalline diamond, high speed steel, and carbides. J Tribol 135. https://doi.org/10.1115/1.4024546

  82. Fressengeas C, Molinari A (1987) Instability and localization of plastic flow in shear at high strain rates. J Mech Phys Solids 35:185–211. https://doi.org/10.1016/0022-5096(87)90035-4

    Article  ADS  Google Scholar 

  83. Fromentin G, Gasparoux J, Agbeviade K, Giovanola J (2016) Development of a precision machine to perform and study orthogonal micro-cutting. Prod Eng 10:217–226. https://doi.org/10.1007/s11740-016-0657-8

    Article  Google Scholar 

  84. Germain G, Dal Santo P, Lebrun J-L (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51:230–238

    Article  Google Scholar 

  85. Germain G, Lebrun J-L, Braham-Bouchnak T, Bellett D, Auger S (2008) Laser-assisted machining of Inconel 718 with carbide and ceramic inserts. Int J Mater Form 1:523–526. https://doi.org/10.1007/s12289-008-0213-y

    Article  Google Scholar 

  86. Germain G, Robert P, Lebrun J-L, Dal Santo P, Poitou A (2005) Finite International Journal of Forming Processes 8:347–361

  87. Ginting A, Nouari M (2009) Surface integrity of drymachined titanium alloys. Int J Mach Tools Manuf 49:325–332

    Article  Google Scholar 

  88. Girinon M, Dumont F, Valiorgue F, Rech J, Feulvarch E, Lefebvre F, Karaouni H, Jourden E (2018) Influence of lubrication modes on residual stresses generation in drilling of 316L, 15–5PH and Inconel 718 alloys. Procedia CIRP 71:41–46. https://doi.org/10.1016/j.procir.2018.05.020

    Article  Google Scholar 

  89. Girinon M, Karaouni H, Masciantonio U, Lefebvre F, Jourden E, Valiorgue F, Rech J, Feulvarch E (2019) Risks related to the lack of lubrication on surface integrity in drilling. Heliyon 5:e01138

    Article  PubMed  PubMed Central  Google Scholar 

  90. Grzesik W, Kiszka P, Kowalczyk D, Żak K, Rech J (2014) Investigation of the machining process of spheroidal cast iron using cubic boron nitride (CBN) tools. Metalurgija 53:33–36

    Google Scholar 

  91. Grzesik W, Rech J, Żak K (2014) Determination of friction in metal cutting with tool wear and flank face effects. Wear 317:8–16

    Article  CAS  Google Scholar 

  92. Habak M, Lebrun J, Huneau B, Germain G, Robert P (2006) Effect of carbides and cutting parameters on chip morphology and cutting temperature during orthogonal hard turning of 100Cr6 bearing steel with a cBN cutting tool. Presented at the 9th CIRP International Workshop on Modeling of Machining Operations, Bled, Slovenia

  93. Haddad F, Lescalier C, Desaigues J-E, Bomont-Arzur A, Bomont O (2019) Metallurgical analysis of chip forming process when machining high strength bainitic steels. J Manuf Mater Process 3:10. https://doi.org/10.3390/jmmp3010010

    Article  CAS  Google Scholar 

  94. Haddag B, Atlati S, Nouari M, Moufki A (2016) Dry machining aeronautical aluminum alloy AA2024-T351: analysis of cutting forces, chip segmentation and built-up edge formation. Metals 6:197. https://doi.org/10.3390/met6090197

    Article  Google Scholar 

  95. Haddag B, Makich H, Nouari M, Dhers J (2014) Tribological behaviour and tool wear analyses in rough turning of large-scale parts of nuclear power plants using grooved coated insert. Tribol Int 80:58–70. https://doi.org/10.1016/j.triboint.2014.06.017

    Article  CAS  Google Scholar 

  96. Halila F, Czarnota C, Nouari M (2014) A new abrasive wear law for the sticking and sliding contacts when machining metallic alloys. Wear 315:125–135. https://doi.org/10.1016/j.wear.2014.03.013

    Article  CAS  Google Scholar 

  97. Hamm I, Poulachon G, Rossi F, Biremaux H (2021) Innovative experimental measurements of cutting temperature and thermal partition during Ti-6Al-4V orthogonal cutting. Procedia CIRP, 18th CIRP Conference on Modeling of Machining Operations (CMMO), Ljubljana, Slovenia, 102:281–286. https://doi.org/10.1016/j.procir.2021.09.048

  98. Harzallah M, Pottier T, Gilblas R, Landon Y, Mousseigne M, Senatore J (2020) Thermomechanical coupling investigation in Ti-6Al-4V orthogonal cutting: experimental and numerical confrontation. Int J Mech Sci 169:105322. https://doi.org/10.1016/j.ijmecsci.2019.105322

    Article  Google Scholar 

  99. Harzallah M, Pottier T, Gilblas R, Landon Y, Mousseigne M, Senatore J (2018) A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale. Int J Mach Tools Manuf 130–131:20–35. https://doi.org/10.1016/J.IJMACHTOOLS.2018.03.003

    Article  Google Scholar 

  100. Harzallah M, Pottier T, Senatore J, Mousseigne M, Germain G, Landon Y (2017) Numerical and experimental investigations of Ti-6Al-4V chip generation and thermo-mechanical couplings in orthogonal cutting. Int J Mech Sci 134:189–202

    Article  Google Scholar 

  101. Hor A, Morel F, Lebrun J-L, Germain G (2013) Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range. Mech Mater 64:91–110. https://doi.org/10.1016/j.mechmat.2013.05.002

    Article  Google Scholar 

  102. Hribersek M, Pusavec F, Rech J, Kopac J (2018) Modeling of machined surface characteristics in cryogenic orthogonal turning of inconel 718. Mach Sci Technol 22:829–850. https://doi.org/10.1080/10910344.2017.1415935

    Article  CAS  Google Scholar 

  103. Hribersek M, Sajn V, Pusavec F, Rech J, Kopac J (2017) The procedure of solving the inverse problem for determining surface heat transfer coefficient between liquefied nitrogen and inconel 718 workpiece in cryogenic machining. Procedia CIRP 58:617–622

    Article  Google Scholar 

  104. Iraola J, Rech J, Valiorgue F, Arrazola P (2012) Characterization of friction coefficient and heat partition coefficient between an austenitic steel aisi304l and a tin-coated carbide cutting tool. Mach Sci Technol 16:189–204. https://doi.org/10.1080/10910344.2012.673965

    Article  CAS  Google Scholar 

  105. Jawahir I, Attia H, Biermann D, Duflou J, Klocke F, Meyer D, Newman S, Pusavec F, Putz M, Rech J (2016) Cryogenic manufacturing processes. CIRP Ann 65:713–736

    Article  Google Scholar 

  106. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann 60:603–626. https://doi.org/10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  107. Kermouche G, Jacquet G, Courbon C, Rech J, Zhang Y, Chromik R (2017) microstructure evolution induced by sliding-based surface thermomechanical treatments-application to pure copper. presented at the materials science forum. Trans Tech Publications Ltd, pp. 915–920. https://doi.org/10.4028/www.scientific.net/MSF.879.915

  108. Kouadri S, Necib K, Atlati S, Haddag B, Nouari M (2013) Quantification of the chip segmentation in metal machining: Application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co. Int J Mach Tools Manuf 64:102–113. https://doi.org/10.1016/j.ijmachtools.2012.08.006

    Article  Google Scholar 

  109. Samuel KK, Birembaux H, Rossi F, Poulachon G (2022) Etude expérimentale de l’usinage du Ti6Al4V sous assistance CO2 supercritique. Conference Manufacturing21, Ecole Normale Supérieure Paris-Saclay, Oct 2022, Gif Sur Yvette, France

  110. Kusiak A, Battaglia J-L, Rech J (2005) Tool coatings influence on the heat transfer in the tool during machining. Surf Coat Technol 195:29–40. https://doi.org/10.1016/j.surfcoat.2005.01.007

    Article  CAS  Google Scholar 

  111. Lagarde Q, Wagner V, Dessein G, Harzallah M (2021) Effect of temperature on tool wear during milling of Ti64. J Manuf Sci Eng 143:071007. https://doi.org/10.1115/1.4049847

    Article  Google Scholar 

  112. Lebouvier A-S, Lipinski P, Molinari A (2000) Numerical study of the propagation of an adiabatic shear band. J Phys IV 10:Pr9–Pr9408. https://doi.org/10.1051/jp4:2000967

    Article  Google Scholar 

  113. Lequien P, Poulachon G, Outeiro J (2018) Thermomechanical analysis induced by interrupted cutting of Ti6Al4V under several cooling strategies. CIRP Ann 67:91–94. https://doi.org/10.1016/j.cirp.2018.03.018

    Article  Google Scholar 

  114. Lequien P, Poulachon G, Outeiro J, Rech J (2018) Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining. Appl Therm Eng 128:500–507. https://doi.org/10.1016/j.applthermaleng.2017.09.054

    Article  CAS  Google Scholar 

  115. Leveille T, Granier C, Valiorgue F, Pascal H, Rech J, Van-Robaeys A, Lefebvre F, Kolmacka J, Dorlin T (2021) Characterization of residual stresses induced by a multistep hole making sequence. Procedia CIRP 102:477–481. https://doi.org/10.1016/j.procir.2021.09.081

    Article  Google Scholar 

  116. List G, Nouari M, Géhin D, Gomez S, Manaud J-P, Le Petitcorps Y, Girot F (2005) Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 259:1177–1189. https://doi.org/10.1016/j.wear.2005.02.056

    Article  CAS  Google Scholar 

  117. List G, Sutter G, Bi XF, Molinari A, Bouthiche A (2013) Strain, strain rate and velocity fields determination at very high cutting speed. J Mater Process Technol 213:693–699

    Article  Google Scholar 

  118. Mabrouki T, Deshayes L, Ivester R, Rigal J, Jurrens K (2004) Material modeling and experimental study of serrated chip morphology. In: Proceedings of the 7th CIRP International Workshop on The Modeling of Machining Operations, ENSAM, Cluny, France, pp 4–5

  119. Mahfoudi F, List G, Molinari A, Moufki A, Boulanouar L (2008) High speed turning for hard material with PCBN inserts: tool wear analysis. Int J Mach Mach Mater 3:62–79. https://doi.org/10.1504/IJMMM.2008.017625

    Article  Google Scholar 

  120. Maurel-Pantel A, Fontaine M, Michel G, Thibaud S, Gelin JC (2013) Experimental investigations from conventional to high speed milling on a 304-L stainless steel. Int J Adv Manuf Technol 69:2191–2213. https://doi.org/10.1007/s00170-013-5159-7

    Article  Google Scholar 

  121. Miguélez MH, Soldani X, Molinari A (2013) Analysis of adiabatic shear banding in orthogonal cutting of Ti alloy. Int J Mech Sci 75:212–222. https://doi.org/10.1016/j.ijmecsci.2013.06.011

    Article  Google Scholar 

  122. Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of Ti–6Al–4V: experiments and modeling. Int J Plast 18:443–459

    Article  CAS  Google Scholar 

  123. Molinari A, Nouari M (2002) Modeling of tool wear by diffusion in metal cutting. Wear 252:135–149. https://doi.org/10.1016/S0043-1648(01)00858-4

    Article  CAS  Google Scholar 

  124. Molinari A, Nouari M (2000) Tool wear in high speed machining. J Phys IV 10:Pr9–Pr9-546. https://doi.org/10.1051/jp4:2000990

    Article  Google Scholar 

  125. Molinari A, Soldani X, Miguélez MH (2013) Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti–6Al–4V. J Mech Phys Solids 61:2331–2359. https://doi.org/10.1016/j.jmps.2013.05.006

    Article  ADS  CAS  Google Scholar 

  126. Mondelin A, Claudin C, Rech J, Dumont F (2011) Effects of lubrication mode on friction and heat partition coefficients at the tool–work material interface in machining. Tribol Trans 54:247–255. https://doi.org/10.1080/10402004.2010.538489

    Article  CAS  Google Scholar 

  127. Mondelin A, Rech J, Feulvarch E, Coret M (2014) Characterisation of surface martensite-austenite transformation during finish turning of an AISI S15500 stainless steel. Int J Mach Mach Mater 7(15):101–121. https://doi.org/10.1504/IJMMM.2014.059190

    Article  Google Scholar 

  128. Mondelin A, Valiorgue F, Rech J, Coret M (2021) 3D hybrid numerical model of residual stresses: numerical—sensitivity to cutting parameters when turning 15–5PH stainless steel. J Manuf Mater Process 5:70. https://doi.org/10.3390/jmmp5030070

    Article  CAS  Google Scholar 

  129. Mondelin A, Valiorgue F, Rech J, Coret M, Feulvarch E (2013) Modeling of surface dynamic recrystallisation during the finish turning of the 15–5PH steel. Procedia Cirp 8:311–315. https://doi.org/10.1016/j.procir.2013.06.108

    Article  Google Scholar 

  130. Moufki A, Molinari A, Dudzinski D (1998) Modelling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids 46:2103–2138. https://doi.org/10.1016/S0022-5096(98)00032-5

    Article  ADS  CAS  Google Scholar 

  131. Moussaoui K, Monies F, Mousseigne M, Gilles P, Rubio W (2016) Balancing the transverse cutting force during inclined milling and effect on tool wear: application to Ti6Al4V. Int J Adv Manuf Technol 82:1859–1880. https://doi.org/10.1007/s00170-015-7518-z

    Article  Google Scholar 

  132. Moussaoui K, Mousseigne M, Senatore J, Chieragatti R, Monies F (2013) Influence of milling on surface integrity of Ti6Al4V—study of the metallurgical characteristics: microstructure and microhardness. Int J Adv Manuf Technol 67:1477–1489. https://doi.org/10.1007/s00170-012-4582-5

    Article  Google Scholar 

  133. Naisson P, Joel R, Paris H (2013) Characterization of friction properties during machining of various stainless steels. Eng Trans 61:239–248

    Google Scholar 

  134. Nouari M, Ginting A (2006) Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surf Coat Technol 200:5663–5676. https://doi.org/10.1016/j.surfcoat.2005.07.063

    Article  CAS  Google Scholar 

  135. Nouari M, Iordanoff I (2007) Effect of the third-body particles on the tool–chip contact and tool-wear behaviour during dry cutting of aeronautical titanium alloys. Tribol Int 40:1351–1359. https://doi.org/10.1016/j.triboint.2007.03.003

    Article  CAS  Google Scholar 

  136. Nouari M, List G, Girot F, Gehin D (2005) Effect of machining parameters and coating on wear mechanisms in dry drilling of aluminium alloys. Int J Mach Tools Manuf 45:1436–1442. https://doi.org/10.1016/j.ijmachtools.2005.01.026

    Article  Google Scholar 

  137. Nouari M, Makich H (2014) On the physics of machining titanium alloys: interactions between cutting parameters, microstructure and tool wear. Metals 4:335–358. https://doi.org/10.3390/met4030335

    Article  CAS  Google Scholar 

  138. Nouari M, Makich H (2013) Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti-6Al-4V and Ti-555. Int J Refract Met Hard Mater 41:259–269

    Article  CAS  Google Scholar 

  139. Nouari M, Molinari A (2005) Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds. Wear, 15th Int Conf Wear Mater 259:1151–1159. https://doi.org/10.1016/j.wear.2005.02.081

    Article  CAS  Google Scholar 

  140. Outeiro J, Rossi F, Fromentin G, Poulachon G, Germain G, Batista A (2013) Process mechanics and surface integrity induced by dry and cryogenic machining of AZ31B-O magnesium alloy. Procedia Cirp 8:487–492. https://doi.org/10.1016/j.procir.2013.06.138

    Article  Google Scholar 

  141. Philippon S, Sutter G, Molinari A (2004) An experimental study of friction at high sliding velocities. Wear 257:777–784. https://doi.org/10.1016/j.wear.2004.03.017

    Article  CAS  Google Scholar 

  142. Popa A, Baili M, Dessein G, Dutilh V (2011) Identification of tool failure modes in drilling Udimet® 720 superalloy. In: International conference on structural analysis of advanced materials, 7 - 10 Sept 2011, Sinaia, Romania

  143. Pottier T, Germain G, Calamaz M, Morel A, Coupard D (2014) Sub-millimeter measurement of finite strains at cutting tool tip vicinity. Exp Mech 54:1031–1042. https://doi.org/10.1007/s11340-014-9868-0

    Article  CAS  Google Scholar 

  144. Poulachon G, Albert A, Schluraff M, Jawahir I (2005) An experimental investigation of work material microstructure effects on white layer formation in PCBN hard turning. Int J Mach Tools Manuf 45:211–218. https://doi.org/10.1016/j.ijmachtools.2004.07.009

    Article  Google Scholar 

  145. Poulachon G, Bandyopadhyay B, Jawahir I, Pheulpin S, Seguin E (2004) Wear behavior of CBN tools while turning various hardened steels. Wear 256:302–310. https://doi.org/10.1016/S0043-1648(03)00414-9

    Article  CAS  Google Scholar 

  146. Poulachon G, Bandyopadhyay B, Jawahir I, Pheulpin S, Seguin E (2003) The influence of the microstructure of hardened tool steel workpiece on the wear of PCBN cutting tools. Int J Mach Tools Manuf 43:139–144. https://doi.org/10.1016/S0890-6955(02)00170-0

    Article  Google Scholar 

  147. Poulachon G, Dessoly M, Lebrun J, Le Calvez C, Prunet V, Jawahir I (2002) Sulphide inclusion effects on tool-wear in high productivity milling of tool steels. Wear 253:339–356. https://doi.org/10.1016/S0043-1648(02)00122-9

    Article  CAS  Google Scholar 

  148. Poulachon G, Moisan A, Jawahir I (2001) On modelling the influence of thermo-mechanical behavior in chip formation during hard turning of 100Cr6 bearing steel. CIRP Ann 50:31–36. https://doi.org/10.1016/S0007-8506(07)62064-2

    Article  Google Scholar 

  149. Poulachon G, Moisan A, Jawahir I (2001) Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools. Wear 250:576–586. https://doi.org/10.1016/S0043-1648(01)00609-3

    Article  Google Scholar 

  150. Poulachon G, Moisan AL (2000) Hard turning: chip formation mechanisms and metallurgical aspects. J Manuf Sci Eng 122:406–412. https://doi.org/10.1115/1.1285891

    Article  Google Scholar 

  151. Pouliquen A, Chanfreau N, Gallegos-Mayorga L, Mareau C, Ayed Y, Germain G, Dehmas M (2023) Influence of the microstructure of a Ti5553 titanium alloy on chip morphology and cutting forces during orthogonal cutting. J Mater Process Technol 319:118054. https://doi.org/10.1016/j.jmatprotec.2023.118054

    Article  CAS  Google Scholar 

  152. Pusavec F, Lu T, Courbon C, Rech J, Aljancic U, Kopac J, Jawahir I (2016) Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance. J Mater Process Technol 233:19–28. https://doi.org/10.1016/j.jmatprotec.2016.02.003

    Article  CAS  Google Scholar 

  153. Ramirez C, Idhil Ismail A, Gendarme C, Dehmas M, Aeby-Gautier E, Poulachon G, Rossi F (2017) Understanding the diffusion wear mechanisms of WC-10%Co carbide tools during dry machining of titanium alloys. Wear 390–391:61–70. https://doi.org/10.1016/j.wear.2017.07.003

    Article  CAS  Google Scholar 

  154. Ranc N, Pina V, Sutter G, Philippon S (2005) Temperature measurement by visible pyrometry: orthogonal cutting application. J Heat Transf 126:931–936. https://doi.org/10.1115/1.1833361

    Article  CAS  Google Scholar 

  155. Rancic M, Colin C, Sennour M, Costes J-P, Poulachon G (2017) Microstructural investigations of the white and deformed layers close to the turned surface of Ti-6Al-4V. Metall Mater Trans A 48:389–402. https://doi.org/10.1007/s11661-016-3844-5

    Article  CAS  Google Scholar 

  156. Rech J (2006) A multiview approach to the tribological characterisation of cutting tool coatings for steels in high-speed dry turning. Int J Mach Mach Mater 1:27–44

    Google Scholar 

  157. Rech J (2006) Influence of cutting tool coatings on the tribological phenomena at the tool-chip interface in orthogonal dry turning. Surf Coat Technol 200:5132–5139. https://doi.org/10.1016/j.surfcoat.2005.05.032

    Article  CAS  Google Scholar 

  158. Rech J (2006) Influence of cutting edge preparation on the wear resistance in high speed dry gear hobbing. Wear 261:505–512. https://doi.org/10.1016/j.wear.2005.12.007

    Article  CAS  Google Scholar 

  159. Rech J, Arrazola PJ, Claudin C, Courbon C, Pusavec F, Kopac J (2013) Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann - Manuf Technol 1:79–82. https://doi.org/10.1016/j.cirp.2013.03.099

    Article  Google Scholar 

  160. Rech J, Battaglia J, Moisan A (2005) Thermal influence of cutting tool coatings. J Mater Process Technol 159:119–124. https://doi.org/10.1016/j.jmatprotec.2004.04.414

    Article  CAS  Google Scholar 

  161. Rech J, Claudin C, D’eramo E (2009) Identification of a friction model—application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool. Tribol Int 42:738–744. https://doi.org/10.1016/j.triboint.2008.10.007

    Article  CAS  Google Scholar 

  162. Rech J, Claudin C, Grzesik W, Zalisz Z (2008) Characterization of the friction properties of various coatings at the tool—chip—workpiece interfaces in dry machining of AISI 4140 steel. Proc Inst Mech Eng Part J J Eng Tribol 222:617–627. https://doi.org/10.1007/s12289-008-0172-3

    Article  CAS  Google Scholar 

  163. Rech J, Giovenco A, Courbon C, Cabanettes F (2018) Toward a new tribological approach to predict cutting tool wear. CIRP Ann 67:65–68. https://doi.org/10.1016/j.cirp.2018.03.014

    Article  Google Scholar 

  164. Rech J, Kusiak A, Battaglia J (2004) Tribological and thermal functions of cutting tool coatings. Surf Coat Technol 186:364–371. https://doi.org/10.1016/j.surfcoat.2003.11.027

    Article  CAS  Google Scholar 

  165. Rech J, Moisan A (2003) Surface integrity in finish hard turning of case-hardened steels. Int J Mach Tools Manuf 43:543–550. https://doi.org/10.1016/S0890-6955(02)00141-4

    Article  Google Scholar 

  166. Rech J, Yen Y-C, Schaff M, Hamdi H, Altan T, Bouzakis K (2005) Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts. Wear 259:1168–1176. https://doi.org/10.1016/j.wear.2005.02.072

    Article  CAS  Google Scholar 

  167. Régnier T, Fromentin G, Marcon B, Outeiro J, d’Acunto A, Crolet A, Grunder T (2018) Fundamental study of exit burr formation mechanisms during orthogonal cutting of AlSi aluminium alloy. J Mater Process Technol 257:112–122. https://doi.org/10.1016/j.jmatprotec.2018.02.037

    Article  CAS  Google Scholar 

  168. Remadna M, Rigal JF (2006) Evolution during time of tool wear and cutting forces in the case of hard turning with CBN inserts. J Mater Process Technol 178:67–75. https://doi.org/10.1016/j.jmatprotec.2005.03.038

    Article  Google Scholar 

  169. Rigal J-F, Zapciu M, Mabrouki T, Belhadi S (2006) Sawtooth chip formation in hard turning and the approach to separate process segmentation and machine assembly vibration frequencies. In: Proceedings of the 15th International Conference on Manufacturing Systems – ICMaS. Editura Academiei Române

  170. Sarjana SS, Bencheikh I, Nouari M, Ginting A (2020) Study on cutting performance of cermet tool in turning of hardened alloy steel. Int J Refract Met Hard Mater 91:105255. https://doi.org/10.1016/j.ijrmhm.2020.105255

    Article  CAS  Google Scholar 

  171. Sela A, Ortiz-De-Zarate G, Soler D, Aristimuño P, Soriano D, Germain G, Ducobu F, Arrazola PJ (2020) Surface drag analysis after Ti-6Al-4V orthogonal cutting using grid distortion. Procedia CIRP 87:372–377

    Article  Google Scholar 

  172. Sela A, Ortiz-de-Zarate G, Soler D, Germain G, Aristimuño P, Arrazola PJ (2021) Measurement of plastic strain and plastic strain rate during orthogonal cutting for Ti-6Al-4V. Int J Mech Sci 198:106397. https://doi.org/10.1016/j.ijmecsci.2021.106397

    Article  Google Scholar 

  173. Sela A, Soler D, Ortiz-de-Zarate G, Germain G, Ducobu F, Arrazola PJ (2021) Inverse identification of the ductile failure law for Ti6Al4V based on orthogonal cutting experimental outcomes. Metals 11:1154. https://doi.org/10.3390/met11081154

    Article  CAS  Google Scholar 

  174. Serra R, Chibane H, Duchosal A (2018) Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel. Int J Adv Manuf Technol 99:2025–2034. https://doi.org/10.1007/s00170-018-2373-3

    Article  Google Scholar 

  175. Sutter G (2005) Chip geometries during high-speed machining for orthogonal cutting conditions. Int J Mach Tools Manuf 45:719–726. https://doi.org/10.1016/j.ijmachtools.2004.09.018

    Article  Google Scholar 

  176. Sutter G, Faure L, Molinari A, Ranc A, Pina V (2003) An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining. Int J Mach Tools Manuf 43:671–678

    Article  Google Scholar 

  177. Sutter G, Molinari A, Faure L, Klepaczko JR, Dudzinski D (1998) An experimental study of high speed orthogonal cutting. J Manuf Sci Eng 120:169–172. https://doi.org/10.1115/1.2830095

    Article  Google Scholar 

  178. Sutter G, Ranc N, Molinari A, Pina V (2008) Experimental measurement of temperature distribution in the chip generated during high speed orthogonal cutting process. Int J Mach Mach Mater 3:52–61. https://doi.org/10.1504/IJMMM.2008.017624

    Article  Google Scholar 

  179. Tahri C, Lequien P, Outeiro J, Poulachon G (2017) CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V. Procedia CIRP 58:584–589. https://doi.org/10.1016/j.procir.2017.03.230

    Article  Google Scholar 

  180. Toubhans B, Fromentin G, Viprey F, Karaouni H, Dorlin T (2020) Machinability of inconel 718 during turning: cutting force model considering tool wear, influence on surface integrity. J Mater Process Technol 285:116809. https://doi.org/10.1016/j.jmatprotec.2020.116809

    Article  CAS  Google Scholar 

  181. Toubhans B, Lorong P, Viprey F, Fromentin G, Karaouni H (2021) A versatile approach, considering tool wear, to simulate undercut error when turning thin-walled workpieces. Int J Adv Manuf Technol 115:1919–1929. https://doi.org/10.1007/s00170-021-07243-8

    Article  Google Scholar 

  182. Trabelsi S, Morel A, Germain G, Bouaziz Z (2017) Tool wear and cutting forces under cryogenic machining of titanium alloy (Ti17). Int J Adv Manuf Technol 91:1493–1505. https://doi.org/10.1007/s00170-016-9841-4

    Article  Google Scholar 

  183. Valiorgue F, Brosse A, Naisson P, Rech J, Hamdi H, Bergheau JM (2013) Emissivity calibration for temperatures measurement using thermography in the context of machining. Appl Therm Eng 58:321–326. https://doi.org/10.1016/j.applthermaleng.2013.03.051

    Article  CAS  Google Scholar 

  184. Valiorgue F, Rech J, Hamdi H, Bonnet C, Gilles P, Bergheau J (2008) Modelling of friction phenomena in material removal processes. J Mater Process Technol 201:450–453

    Article  CAS  Google Scholar 

  185. Wagner V, Baili M, Dessein G (2015) The relationship between the cutting speed, tool wear, and chip formation during Ti-5553 dry cutting. Int J Adv Manuf Technol 76:893–912

    Article  Google Scholar 

  186. Wagner V, Barelli F, Dessein G, Laheurte R, Darnis P, Cahuc O, Mousseigne M (2018) Thermal and microstructure study of the chip formation during turning of Ti64 β lamellar titanium Structure. J Manuf Sci Eng 140

  187. Wagner V, Barelli F, Dessein G, Laheurte R, Darnis P, Cahuc O, Mousseigne M (2018) Thermal and microstructure study of the chip formation during turning of Ti64 β lamellar titanium structure. J Manuf Sci Eng Trans ASME 140. https://doi.org/10.1115/1.4038597

  188. Wagner V, Barelli F, Dessein G, Laheurte R, Darnis P, Cahuc O, Mousseigne M (2017) Comparison of the chip formations during turning of Ti64 β and Ti64 α+β. Proc Inst Mech Eng Part B J Eng Manuf. https://doi.org/10.1177/0954405417728309

    Article  Google Scholar 

  189. Wagner V, Duc E (2014) Study of Ti-1023 milling with toroidal tool. Int J Adv Manuf Technol 75. https://doi.org/10.1007/s00170-014-6217-5

  190. Wagner V, Faye J-P, Dessein G (2019) An experimental study on the effect of high-pressure coolant on chip fragmentation during the turning of stainless steel. Int J Adv Manuf Technol 105:905–918. https://doi.org/10.1007/s00170-019-04272-2

    Article  Google Scholar 

  191. Wagner V, Harzallah M, Baili M, Dessein G, Lallement D (2020) Experimental and numerical investigations of the heating influence on the Ti5553 titanium alloy machinability. J Manuf Process 58:606–614. https://doi.org/10.1016/j.jmapro.2020.08.018

    Article  Google Scholar 

  192. Wagner V, Vissio A, Duc E, Pijolat M (2016) Relationship between cutting conditions and chips morphology during milling of aluminium Al-2050. Int J Adv Manuf Technol 82:1881–1897

    Article  Google Scholar 

  193. Wanigarathne P, Kardekar A, Dillon O, Poulachon G, Jawahir I (2005) Progressive tool-wear in machining with coated grooved tools and its correlation with cutting temperature. Wear 259:1215–1224

    Article  CAS  Google Scholar 

  194. Werda S, Duchosal A, Le Quilliec G, Morandeau A, Leroy R (2019) Effect of minimum quantity lubrication strategies on tribological study of simulated machining operation. Mech Ind 20:624

    Article  Google Scholar 

  195. Werda S, Duchosal A, Le Quilliec G, Morandeau A, Leroy R (2017) Minimum quantity lubrication advantages when applied to insert flank face in milling. Int J Adv Manuf Technol 92:2391–2399. https://doi.org/10.1007/s00170-017-0317-y

    Article  Google Scholar 

  196. Werda S, Duchosal A, Le Quilliec G, Morandeau A, Leroy R (2016) Minimum quantity lubrication: influence of the oil nature on surface integrity. Procedia CIRP 45:287–290. https://doi.org/10.1016/j.procir.2016.02.330

    Article  Google Scholar 

  197. Yameogo D, Haddag B, Makich H, Nouari M (2019) A physical behavior model including dynamic recrystallization and damage mechanisms for cutting process simulation of the titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol 100:333–347. https://doi.org/10.1007/s00170-018-2663-9

    Article  Google Scholar 

  198. Yameogo D, Haddag B, Makich H, Nouari M (2017) Prediction of the cutting forces and chip morphology when machining the Ti6Al4V alloy using a microstructural coupled model. Procedia CIRP, 16th CIRP Conf Model Mach Oper (16th CIRP CMMO) 58:335–340. https://doi.org/10.1016/j.procir.2017.03.233

    Article  Google Scholar 

  199. Zemzemi F, Bensalem W, Rech J, Dogui A, Kapsa P (2008) New tribometer designed for the characterisation of the friction properties at the tool/chip/workpiece interfaces in machining. Tribotest 14:11–25

    Article  CAS  Google Scholar 

  200. Zhang J, Liu Z, Liu H, Xu X, Outeiro J, Zhao W (2021) Fragmented chip formation mechanism in high-speed cutting from the perspective of stress wave effect. CIRP Ann 70:53–56. https://doi.org/10.1016/j.cirp.2021.03.016

    Article  Google Scholar 

  201. Zouabi H, Calamaz M, Wagner V, Cahuc O, Dessein G (2023) Kinematic fields measurement during Ti-6Al-4V chip formation using new high-speed imaging system. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10575-8

    Article  Google Scholar 

  202. Zouabi H, Calamaz M, Wagner V, Cahuc O, Dessein G (2021) Kinematic fields measurement during orthogonal cutting using digital images correlation: a review. J Manuf Mater Process 5:7. https://doi.org/10.3390/jmmp5010007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Manufacturing’21 community for all the work they have done over the last few years and to the various people in charge of the group for making it grow.

Author information

Authors and Affiliations

Authors

Contributions

Vincent Wagner has written and collected all the articles.

Corresponding author

Correspondence to Vincent Wagner.

Ethics declarations

Consent for publication

The authors give consent for the publication of identifiable details, to be published in this paper.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, V. State of the art of research studies on machining processes by French research network Manufacturing’21. Int J Adv Manuf Technol 131, 843–886 (2024). https://doi.org/10.1007/s00170-023-12687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12687-1

Keywords

Navigation