Skip to main content
Log in

Magnetic field-assisted finishing: mechanism, application, and outlook

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnetic field-assisted finishing (MFAF) technology, as a non-traditional surface finishing technology, has a unique advantage in machining components composed of complex shapes and difficult-to-process materials and has been widely concerned. To date, more than thirty MFAF technologies have been developed; however, there has not been a detailed study to classify these technologies and compare and contrast the advantages and limitations of these technologies. Therefore, in order to promote the development of MFAF technology, MFAF technology is reviewed in detail in this study. This paper introduces the origin and development of MFAF technology and proposes a classification method based on media. On this basis, the differences of wear mechanisms and the action mechanism of composite processing are discussed, the representative MFAF techniques are overviewed, and the commonly used material removal models of MFAF techniques are summarized. Finally, the possible research directions of MFAF process in the future are described. This paper has important reference value for researchers in the field of ultra-precision machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Data availability

The datasets supporting the results of this article are included within the article.

Abbreviations

MFAF:

Magnetic field-assisted finishing

MAF:

Magnetic abrasive finishing

MAFF:

Magnetic abrasive flow finishing

MAJ:

Magnetic abrasive jet finishing

V-MAF:

Vibration-magnetic abrasive composite finishing

E-MAF:

Electrolytic-magnetic abrasive composite finishing

C-MAF:

Chemical-magnetic abrasive composite finishing

V-C-MAF:

Vibration chemical-magnetic abrasive composite finishing

V-E-MAF:

Vibration electrolytic-magnetic abrasive composite finishing

MNF:

Magnetic needle finishing

V-MNF:

Vibration-magnetic needle finishing

C-MNF:

Chemical-magnetic needle finishing

AFM:

Abrasive flow machining

ECM:

Electrochemical machining

MFG:

Magnetic fluid grinding

MFP:

Magnetic fluid floating polishing

MFAP:

Magnetic field-assisted uniform pressure polishing

MRF:

Magnetorheological finishing

MRFPF:

Magnetorheological foam plane finishing

MJP:

Magnetorheological jet polishing

MRAFF:

Magnetorheological abrasive flow finishing

MCFF:

Magnetic composite fluid finishing

MSTF:

Magnetic shear thickening finishing

EMRF:

Electromagnetic rheological finishing

ERF:

Electrorheological finishing

MAGIC:

Magnetic intelligent composite polishing

MHF:

Magnetic honing finishing

MRR :

Material removal rate

MR :

Material removal

References 

  1. Ciambriello L, Cavaliere E, Gavioli L (2022) Influence of roughness, porosity and grain morphology on the optical properties of ultrathin Ag films. Appl Surface Sci 576. https://doi.org/10.1016/j.apsusc.2021.151885

  2. Alves H P, Castro de Barros T H, Silva Nascimento D L et al (2022) Influence of surface roughness on the sensitivity of a D-shaped optical fiber-based refractive index sensor. Sensors and Actuators A: Physical 344. https://doi.org/10.1016/j.sna.2022.113702

  3. Oh SH, Cho SU, Kim CS et al (2011) Fabrication of nickel stamp with improved sidewall roughness for optical devices. Microelectron Eng 88(9):2900–2907. https://doi.org/10.1016/j.mee.2011.03.021

    Article  CAS  Google Scholar 

  4. Yianni S A, Creedon D L, Schenk A K et al (2021) Correlation between electronic micro-roughness and surface topography in two-dimensional surface conducting hydrogen-terminated diamond. Diam Relat Mater 116. https://doi.org/10.1016/j.diamond.2021.108377

  5. Liu X-l, Cai Z-b, Liu S-b et al (2017) Effect of roughness on electrical contact performance of electronic components. Microelectron Reliab 74:100–109. https://doi.org/10.1016/j.microrel.2017.05.024

    Article  CAS  Google Scholar 

  6. Logunov AV, Zavodov SA, Danilov DV (2019) The challenges in development of nickel-based heat-resistant superalloys for gas turbine disks and creation of a new superalloy with increased operational characteristics. Mater Today: Proceedings 11:459–464. https://doi.org/10.1016/j.matpr.2019.01.013

    Article  CAS  Google Scholar 

  7. Zhao Q, Sun Q, Xin S et al (2022) High-strength titanium alloys for aerospace engineering applications: a review on melting-forging process. Mater Sci Eng: A 845:143260. https://doi.org/10.1016/j.msea.2022.143260

    Article  CAS  Google Scholar 

  8. Ramesh S, Karunamoorthy L, Palanikumar K (2012) Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement 45(5):1266–1276. https://doi.org/10.1016/j.measurement.2012.01.010

    Article  ADS  Google Scholar 

  9. Catalucci S, Senin N, Sims-Waterhouse D et al (2020) Measurement of complex freeform additively manufactured parts by structured light and photogrammetry. Measurement 164. https://doi.org/10.1016/j.measurement.2020.108081

  10. Hu X, Park SH, Gil ES et al (2011) The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials 32(34):8979–8989. https://doi.org/10.1016/j.biomaterials.2011.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia Z, Fang F, Ahearne E et al (2020) Advances in polishing of optical freeform surfaces: a review. J Mater Process Technol 286. https://doi.org/10.1016/j.jmatprotec.2020.116828

  12. Ronoh K, Mwema F, Dabees S et al (2022) Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: a review. Biomed Eng Adv 4. https://doi.org/10.1016/j.bea.2022.100047

  13. Zhu W-L, Beaucamp A (2020) Compliant grinding and polishing: a review. Int J Mach Tools Manuf 158. https://doi.org/10.1016/j.ijmachtools.2020.103634

  14. Li G, Bao Y, Wang H et al (2023) An online monitoring methodology for grinding state identification based on real-time signal of CNC grinding machine. Mech Syst Signal Process 200. https://doi.org/10.1016/j.ymssp.2023.110540

  15. Yu S, Yao P, Xu J et al (2023) Profile error compensation in ultra-precision grinding of aspherical-cylindrical lens array based on the real-time profile of wheel and normal residual error. J Mater Process Technol 312. https://doi.org/10.1016/j.jmatprotec.2022.117849

  16. Singh A K, Kumar A, Sharma V et al (2020) Sustainable techniques in grinding: state of the art review. J Clean Prod 269. https://doi.org/10.1016/j.jclepro.2020.121876

  17. Deng T, Li J, Zheng Z (2020) Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation. Int J Mach Tools Manuf 148. https://doi.org/10.1016/j.ijmachtools.2019.103472

  18. Xiao H, Dai Y, Duan J et al (2021) Material removal and surface evolution of single crystal silicon during ion beam polishing. Appl Surface Sci 544 . https://doi.org/10.1016/j.apsusc.2021.148954

  19. Wang J, Chen J, Jin T et al (2020) Preparation of nanotwinned cBN cutting edge by combining mechanical lapping and ion beam polishing. Diam Relat Mater 105. https://doi.org/10.1016/j.diamond.2020.107801

  20. Fang N, Birch R, Britton T B (2022) Optimizing broad ion beam polishing of zircaloy-4 for electron backscatter diffraction analysis. Micron 159. https://doi.org/10.1016/j.micron.2022.103268

  21. Meng F, Yu T, Wiercigroch M et al (2023) Profile prediction for ultrasonic vibration polishing of alumina ceramics. Int J Mech Sci 252. https://doi.org/10.1016/j.ijmecsci.2023.108360

  22. Yuan Z, Xiang D, Peng P et al (2023) A comprehensive review of advances in ultrasonic vibration machining on SiCp/Al composites. J Mater Res Technol 24:6665–6698. https://doi.org/10.1016/j.jmrt.2023.04.245

    Article  CAS  Google Scholar 

  23. Deng H, Zhong M, Xu W (2023) Effects and mechanisms of different types of surfactants on sapphire ultrasonic polishing. Tribol Int 187. https://doi.org/10.1016/j.triboint.2023.108734

  24. Kumar AS, Deb S, Paul S (2021) Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys. J Manuf Process 66:595–607. https://doi.org/10.1016/j.jmapro.2021.04.019

    Article  Google Scholar 

  25. Liu S, Li C, Jin X et al (2023) Quantitative-regulated material removal rate in solid dielectric electrochemical polishing (QRR-SDEP) for smoothing high roughness surface of additively manufactured 316L stainless steel components. Addit Manuf 73. https://doi.org/10.1016/j.addma.2023.103689

  26. Cheng J, Kang R, Dong Z et al (2023) A new polishing method for complex structural parts: moist particle electrolyte electrochemical mechanical polishing (MPE-ECMP). Electrochem Commun 150. https://doi.org/10.1016/j.elecom.2023.107475

  27. Wu W, Wang J, Liu Q et al (2022) Electrochemical polishing assisted selective laser melting of biomimetic superhydrophobic metallic parts. Appl Surface Sci 596. https://doi.org/10.1016/j.apsusc.2022.153601

  28. Chen X, Liang Y, Cui Z et al (2022) Study on material removal mechanism in ultrasonic chemical assisted polishing of silicon carbide. J Manuf Process 84:1463–1477. https://doi.org/10.1016/j.jmapro.2022.11.014

    Article  Google Scholar 

  29. Liu H, Ye M, Ye Z et al (2022) High-quality surface smoothening of laser powder bed fusion additive manufacturing AlSi10Mg via intermittent electrochemical polishing. Surface Coat Technol 443. https://doi.org/10.1016/j.surfcoat.2022.128608

  30. Mu J, Sun T, Leung CLA et al (2023) Application of electrochemical polishing in surface treatment of additively manufactured structures: a review. Progress Mater Sci 136. https://doi.org/10.1016/j.pmatsci.2023.101109

  31. Zhang Z, Zhang Y, Ming W et al (2021) A review on magnetic field assisted electrical discharge machining. J Manuf Process 64:694–722. https://doi.org/10.1016/j.jmapro.2021.01.054

    Article  Google Scholar 

  32. Peruri S R, Chaganti P K (2019) A review of magnetic-assisted machining processes. J Braz Soc Mech Sci Eng 41(10). https://doi.org/10.1007/s40430-019-1944-z

  33. Bains PS, Sidhu SS, Payal HS (2017) Magnetic field assisted EDM: new horizons for improved surface properties. SILICON 10(4):1275–1282. https://doi.org/10.1007/s12633-017-9600-7

    Article  CAS  Google Scholar 

  34. Ahmad S, Singari RM, Mishra RS (2021) Development of Al2O3-SiO2 based magnetic abrasive by sintering method and its performance on Ti-6Al-4V during magnetic abrasive finishing. Trans IMF 99(2):94–101. https://doi.org/10.1080/00202967.2021.1865644

    Article  CAS  Google Scholar 

  35. Xie H, Zou Y (2021) Study on the magnetic abrasive finishing process using alternating magnetic field—discussion on the influence of current waveform variation. Int J Adv Manuf Technol 114(7–8):2471–2483. https://doi.org/10.1007/s00170-021-07048-9

    Article  Google Scholar 

  36. Singh M, Singh AK (2019) Performance investigation of magnetorheological finishing of rolls surface in cold rolling process. J Manuf Process 41:315–329. https://doi.org/10.1016/j.jmapro.2019.04.007

    Article  Google Scholar 

  37. Amir M, Mishra V, Sharma R et al (2022) Development of magnetic nanoparticle based nanoabrasives for magnetorheological finishing process and all their variants. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.11.033

    Article  Google Scholar 

  38. Ghosh G, Sidpara A, Bandyopadhyay P P (2021) Magnetorheological finishing of WC-Co coating using iron-B4C-CNT composite abrasives. Tribol Int 155. https://doi.org/10.1016/j.triboint.2020.106807

  39. Wang Y, Wu Y, Nomura M (2016) Feasibility study on surface finishing of miniature V-grooves with magnetic compound fluid slurry. Precis Eng 45:67–78. https://doi.org/10.1016/j.precisioneng.2016.01.010

    Article  Google Scholar 

  40. Wan S, Wei C, Hu C et al (2021) Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing. Int J Mach Tools Manuf 161. https://doi.org/10.1016/j.ijmachtools.2020.103673

  41. Bae JT, Kim HJ (2021) Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center. J Mech Sci Technol 35(7):2851–2859. https://doi.org/10.1007/s12206-021-0608-y

    Article  Google Scholar 

  42. Kumar M, Das M (2022) Impact of different magnetorheological fluid compositions on poppet valve profile polishing. Precis Eng 76:75–87. https://doi.org/10.1016/j.precisioneng.2022.03.002

    Article  ADS  Google Scholar 

  43. Gupta M K, Dinakar D, Chhabra I M et al (2021) Experimental investigation and machine parameter optimization for nano finishing of fused silica using magnetorheological finishing process. Optik 226. https://doi.org/10.1016/j.ijleo.2020.165908

  44. Bedi TS, Kant R (2021) Comparative performance of magnetorheological external finishing tools using different magnetic structures. Mater Today: Proceedings 41:908–914. https://doi.org/10.1016/j.matpr.2020.09.485

    Article  Google Scholar 

  45. Zhang Z, Geng K, Qiao G et al (2021) The heat flow coupling effect of laser-assisted magnetorheological polishing. Int J Adv Manuf Technol 114(1–2):591–603. https://doi.org/10.1007/s00170-021-06880-3

    Article  Google Scholar 

  46. Wang C, Cheung C F, Ho L T et al (2020) A novel magnetic field-assisted mass polishing of freeform surfaces. J Mater Process Technol 279. https://doi.org/10.1016/j.jmatprotec.2019.116552

  47. Bedi TS, Singh AK (2015) Magnetorheological methods for nanofinishing – a review. Part Sci Technol 34(4):412–422. https://doi.org/10.1080/02726351.2015.1081657

    Article  CAS  Google Scholar 

  48. Yadav PK, Jayswal SC, Saxena KK (2020) Magnetic abrasive flow finishing: a review. Mater Today: Proceedings 26:3257–3264. https://doi.org/10.1016/j.matpr.2020.02.909

    Article  Google Scholar 

  49. Malpotra A, Singh B, Singh L (2023) Electrolytic magnetic abrasive finishing process – a review. Mater Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.237

  50. Han R, Yang G, Zhao G et al (2023) Strengthening mechanism and three-body impact abrasive wear behavior of the hot-rolled air-cooling martensitic wear resistant steel. J Mater Res Technol 24:3023–3032. https://doi.org/10.1016/j.jmrt.2023.03.216

    Article  CAS  Google Scholar 

  51. Zhu P, Zhang G, Du J et al (2021) Removal mechanism of magnetic abrasive finishing on aluminum and magnesium alloys. Int J Adv Manuf Technol 114(5–6):1717–1729. https://doi.org/10.1007/s00170-021-06952-4

    Article  Google Scholar 

  52. Pandiyan V, Shevchik S, Wasmer K et al (2020) Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review. J Manuf Process 57:114–135. https://doi.org/10.1016/j.jmapro.2020.06.013

    Article  Google Scholar 

  53. Moore MA (1974) A review of two-body abrasive wear. Wear 27:1–17

    Article  CAS  Google Scholar 

  54. Sun J, Fang L, Han J et al (2014) Phase transformations of mono-crystal silicon induced by two-body and three-body abrasion in nanoscale. Comput Mater Sci 82:140–150. https://doi.org/10.1016/j.commatsci.2013.09.055

    Article  CAS  Google Scholar 

  55. Song D, Du H, Lin J et al (2022) A review on magnetorheological jet polishing technique for microstructured functional surfaces. Lubricants 10(10). https://doi.org/10.3390/lubricants10100237

  56. Luo Q, Lu J, Xu X (2016) Study on the processing characteristics of SiC and sapphire substrates polished by semi-fixed and fixed abrasive tools. Tribol Int 104:191–203. https://doi.org/10.1016/j.triboint.2016.09.003

    Article  CAS  Google Scholar 

  57. Kang M, Gu Y, Lin J et al (2023) Material removal mechanism of non-resonant vibration-assisted magnetorheological finishing of silicon carbide ceramics. Int J Mech Sci 242. https://doi.org/10.1016/j.ijmecsci.2022.107986

  58. Yin SH, Wang Y, Shinmura T et al (2008) Material removal mechanism in vibration-assisted magnetic abrasive finishing. Adv Mater Res 53–54:57–63. https://doi.org/10.4028/www.scientific.net/AMR.53-54.57

    Article  Google Scholar 

  59. Guo J, Feng W, Jong HJH et al (2020) Finishing of rectangular microfeatures by localized vibration-assisted magnetic abrasive polishing method. J Manuf Process 49:204–213. https://doi.org/10.1016/j.jmapro.2019.11.026

    Article  Google Scholar 

  60. Misra A, Pandey PM, Dixit US et al (2017) Modeling of finishing force and torque in ultrasonic-assisted magnetic abrasive finishing process. Proc Inst Mech Eng, Part B: J Eng Manuf 233(2):411–425. https://doi.org/10.1177/0954405417737579

    Article  Google Scholar 

  61. Misra A, Pandey PM, Dixit US et al (2018) Multi-objective optimization of ultrasonic-assisted magnetic abrasive finishing process. Int J Adv Manuf Technol 101(5–8):1661–1670. https://doi.org/10.1007/s00170-018-3060-0

    Article  Google Scholar 

  62. Gu Y, Fu B, Lin J et al (2023) A novel wheel-type vibration-magnetorheological compound finishing method. Int J Adv Manuf Technol 125(9–10):4213–4235. https://doi.org/10.1007/s00170-023-11034-8

    Article  Google Scholar 

  63. Yun H, Han B, Chen Y et al (2015) Internal finishing process of alumina ceramic tubes by ultrasonic-assisted magnetic abrasive finishing. Int J Adv Manuf Technol 85(1–4):727–734. https://doi.org/10.1007/s00170-015-7927-z

    Article  Google Scholar 

  64. Judal KB, Yadava V, Pathak D (2013) Experimental investigation of vibration assisted cylindrical–magnetic abrasive finishing of aluminum workpiece. Mater Manuf Process 28(11):1196–1202. https://doi.org/10.1080/10426914.2013.811725

    Article  CAS  Google Scholar 

  65. Zheng J, Guo Y, Zhu L et al (2021) Cavitation effect in two-dimensional ultrasonic rolling process. Ultrasonics 115. https://doi.org/10.1016/j.ultras.2021.106456

  66. Fu Y, Zhu X, Wang J et al (2022) Numerical study of the synergistic effect of cavitation and micro-abrasive particles. Ultrason Sonochem 89. https://doi.org/10.1016/j.ultsonch.2022.106119

  67. Tian J, Liu H, Cheng J et al (2022) Improving the small ball-end magnetorheological polishing efficiency of fused silica workpiece by the promoting effect of water-bath heating and sodium hydroxide addition on polishing velocity and chemical reaction. Int J Adv Manuf Technol 123(1–2):645–656. https://doi.org/10.1007/s00170-022-10180-9

    Article  Google Scholar 

  68. Rajput AS, Das M, Kapil S (2022) Investigations on a hybrid chemo-magnetorheological finishing process for freeform surface quality enhancement. J Manuf Process 81:522–536. https://doi.org/10.1016/j.jmapro.2022.07.015

    Article  Google Scholar 

  69. Liu G, Zhao Y, Meng J et al (2022) Preparation of Al2O3 magnetic abrasives by combining plasma molten metal powder with sprayed abrasive powder. Ceram Int 48(15):21571–21578. https://doi.org/10.1016/j.ceramint.2022.04.129

    Article  CAS  Google Scholar 

  70. Li W, Li J, Cheng B et al (2021) Achieving in-situ alloy-hardening core-shell structured carbonyl iron powders for magnetic abrasive finishing. Mater Des 212. https://doi.org/10.1016/j.matdes.2021.110198

  71. Qin P, Zhang G, Zhao Y et al (2020) Study of CBN/Fe-based spherical magnetic abrasive bonding interfacial microstructure prepared by gas atomization with rapid solidification. Adv Powder Technol 31(4):1597–1602. https://doi.org/10.1016/j.apt.2020.01.036

    Article  CAS  Google Scholar 

  72. Pandey K, Pandey PM (2019) An integrated application of chemo-ultrasonic approach for improving surface finish of Si (100) using double disk magnetic abrasive finishing. Int J Adv Manuf Technol 103(9–12):3871–3886. https://doi.org/10.1007/s00170-019-03829-5

    Article  Google Scholar 

  73. Singh Farwaha H, Deepak D, Singh Brar G (2020) Design and performance of ultrasonic assisted magnetic abrasive finishing combined with electrolytic process set up for machining and finishing of 316L stainless steel. Mater Today: Proceedings 33:1626–1631. https://doi.org/10.1016/j.matpr.2020.06.143

    Article  CAS  Google Scholar 

  74. Chen HL, Zhang YX, Yan WL (2004) The technology of finishing process of die space based upon magnetic abrasive finishing. Key Eng Mater 259–260:657–661. https://doi.org/10.4028/www.scientific.net/KEM.259-260.657

    Article  Google Scholar 

  75. Wang Y, Hu DJ (2004) Mechanical cutting model of magnetic abrasive particles and analysis of experimental results. Key Eng Mater 274–276:451–456. https://doi.org/10.4028/www.scientific.net/KEM.274-276.451

    Article  Google Scholar 

  76. Ahmad S, Singari RM, Mishra RS (2021) Tri-objective constrained optimization of pulsating DC sourced magnetic abrasive finishing process parameters using artificial neural network and genetic algorithm. Mater Manuf Process 36(7):843–857. https://doi.org/10.1080/10426914.2020.1866196

    Article  CAS  Google Scholar 

  77. Jiang L, Zhang G, Du J et al (2021) Processing performance of Al2O3/Fe-based composite spherical magnetic abrasive particles. J Magn Magn Mater 528. https://doi.org/10.1016/j.jmmm.2021.167811.

  78. Lin C-T, Yang L-D, Chow H-M (2006) Study of magnetic abrasive finishing in free-form surface operations using the Taguchi method. Int J Adv Manuf Technol 34(1–2):122–130. https://doi.org/10.1007/s00170-006-0573-8

    Article  Google Scholar 

  79. Kang J, Yamaguchi H (2012) Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system. Precis Eng 36(3):510–516. https://doi.org/10.1016/j.precisioneng.2012.01.006

    Article  Google Scholar 

  80. Heng L, Kim JS, Song JH et al (2021) Application of Al2O3/iron-based composite abrasives on MAF process for inner surface finishing of oval-shaped tube: predicting results of MAF process using artificial neural network model. J Mater Res Technol 15:3268–3282. https://doi.org/10.1016/j.jmrt.2021.09.146

    Article  CAS  Google Scholar 

  81. Kang J, George A, Yamaguchi H (2012) High-speed internal finishing of capillary tubes by magnetic abrasive finishing. Procedia CIRP 1:414–418. https://doi.org/10.1016/j.procir.2012.04.074

    Article  Google Scholar 

  82. Patil MG, Chandra K, Misra PS (2011) Magnetic abrasive finishing – a review. Adv Mater Res 418–420:1577–1581. https://doi.org/10.4028/www.scientific.net/AMR.418-420.1577

    Article  Google Scholar 

  83. Tan KL, Yeo S-H, Ong CH (2016) Nontraditional finishing processes for internal surfaces and passages: a review. Proc Inst Mech Eng, Part B: J Eng Manuf 231(13):2302–2316. https://doi.org/10.1177/0954405415626087

    Article  Google Scholar 

  84. Qian C, Fan Z, Tian Y et al (2020) A review on magnetic abrasive finishing. Int J Adv Manuf Technol 112(3–4):619–634. https://doi.org/10.1007/s00170-020-06363-x

    Article  Google Scholar 

  85. Singh B, Chaudhary S, Bhardwaj S et al (2023) A review on micro finishing by magnetic abrasive finishing: challenges and opportunities. Mater Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.070

  86. Singh S, Shan HS (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42:953–959

    Article  Google Scholar 

  87. Sehijpal Singh HSS, Kumar P (2002) Wear behavior of materials in magnetically assisted abrasive flow machining. J Mater Process Technol 128:155–161

    Article  Google Scholar 

  88. Singh P, Singh L, Singh S (2020) Manufacturing and performance analysis of mechanically alloyed magnetic abrasives for magneto abrasive flow finishing. J Manuf Process 50:161–169. https://doi.org/10.1016/j.jmapro.2019.12.033

    Article  Google Scholar 

  89. Jeong-Du Kim Y-H K, Young-Han Bae, Su-Won Lee (1997) Development of a magnetic abrasive jet machining system for precision internal polishing of circular tubes. J Mater Process Technol 71:384-393

  90. Singh A, Ghosh S, Aravindan S (2019) Influence of dry micro abrasive blasting on the physical and mechanical characteristics of hybrid PVD-AlTiN coated tools. J Manuf Process 37:446–456. https://doi.org/10.1016/j.jmapro.2018.11.024

    Article  Google Scholar 

  91. Mulik RS, Pandey PM (2010) Mechanism of surface finishing in ultrasonic-assisted magnetic abrasive finishing process. Mater Manuf Process 25(12):1418–1427. https://doi.org/10.1080/10426914.2010.499580

    Article  CAS  Google Scholar 

  92. Heng L, Kim JS, Tu J-F et al (2020) Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing. Ceram Int 46(11):17335–17346. https://doi.org/10.1016/j.ceramint.2020.04.022

    Article  CAS  Google Scholar 

  93. Wang L, Sun Y, Chen F et al (2022) Experimental study on vibration-assisted magnetic abrasive finishing for internal blind cavity by bias external rotating magnetic pole. Precis Eng 74:69–79. https://doi.org/10.1016/j.precisioneng.2021.11.007

    Article  Google Scholar 

  94. Mulik RS, Pandey PM (2011) Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives. Int J Refract Metals Hard Mater 29(1):68–77. https://doi.org/10.1016/j.ijrmhm.2010.08.002

    Article  CAS  Google Scholar 

  95. Guo C, Zhang D, Li X et al (2022) A permanent magnet tool in ultrasonic assisted magnetic abrasive finishing for 30CrMnSi grooves part. Precis Eng 75:180–192. https://doi.org/10.1016/j.precisioneng.2022.02.010

    Article  Google Scholar 

  96. Guo J, Kum CW, Au KH et al (2016) New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing. Opt Expr 24(12):13542–13554. https://doi.org/10.1364/OE.24.013542

    Article  ADS  CAS  Google Scholar 

  97. Liu GY, Guo ZN, Li YB et al (2011) Composite tools design for electrolytic magnetic abrasive finishing process with FEM. Adv Mater Res 325:536–541. https://doi.org/10.4028/www.scientific.net/AMR.325.536

    Article  Google Scholar 

  98. Muhamad MR, Jamaludin MF, Karim MSA et al (2018) Effects of electrolysis on magnetic abrasive finishing of AA6063-T1 tube internal surface using combination machining tool. Materialwiss Werkstofftech 49(4):442–452. https://doi.org/10.1002/mawe.201700266

    Article  CAS  Google Scholar 

  99. Sun X, Zou Y (2017) Development of magnetic abrasive finishing combined with electrolytic process for finishing SUS304 stainless steel plane. Int J Adv Manuf Technol 92(9–12):3373–3384. https://doi.org/10.1007/s00170-017-0408-9

    Article  Google Scholar 

  100. Zou Y, Xing B, Sun X (2020) Study on the magnetic abrasive finishing combined with electrolytic process—investigation of machining mechanism. Int J Adv Manuf Technol 108(5–6):1675–1689. https://doi.org/10.1007/s00170-020-05442-3

    Article  Google Scholar 

  101. Xing B, Zou Y (2020) Investigation of finishing aluminum alloy A5052 using the magnetic abrasive finishing combined with electrolytic process. Machines 8(4). https://doi.org/10.3390/machines8040078.

  102. Du ZW, Chen Y, Zhou K et al (2015) Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169. Int J Adv Manuf Technol 81(5–8):897–903. https://doi.org/10.1007/s00170-015-7270-4

    Article  Google Scholar 

  103. Muhamad MR, Zou Y, Sugiyama H (2016) Investigation of the finishing characteristics in an internal tube finishing process by magnetic abrasive finishing combined with electrolysis. Trans IMF 94(3):159–165. https://doi.org/10.1080/00202967.2016.1162400

    Article  CAS  Google Scholar 

  104. Pandey N, Singh R, Pant P et al (2018) Development of mathematical model for material removal and surface roughness in electrolytic magnetic abrasive finishing process. IOP Conf Ser: Mater Sci Eng 404. https://doi.org/10.1088/1757-899x/404/1/012053

  105. Singh G, Kumar H (2021) Influence of chemically assisted magnetic abrasive finishing process parameters on external roundness of Inconel 625 tubes. Mater Today: Proceedings 37:3283–3288. https://doi.org/10.1016/j.matpr.2020.09.114

    Article  CAS  Google Scholar 

  106. Kumar H, Singh G (2021) Parametric studies on finishing of inconel 718 flat surfaces with chemically assisted magnetic abrasive finishing process. Mater Today: Proceedings 37:3262–3269. https://doi.org/10.1016/j.matpr.2020.09.110

    Article  CAS  Google Scholar 

  107. Singh G, Kumar H, Kansal HK (2020) Investigations into internal roundness of Inconel 625 tubes with chemically assisted magnetic abrasive finishing. Mater Today: Proceedings 33:1579–1585. https://doi.org/10.1016/j.matpr.2020.05.002

    Article  CAS  Google Scholar 

  108. Pandey K, Pandey U, Pandey PM (2018) Statistical modeling and surface texture study of polished silicon wafer Si (100) using chemically assisted double disk magnetic abrasive finishing. SILICON 11(3):1461–1479. https://doi.org/10.1007/s12633-018-9961-6

    Article  CAS  Google Scholar 

  109. Pandey K, Pandey PM (2017) Chemically assisted polishing of monocrystalline silicon wafer Si (100) by DDMAF. Proc Eng 184:178–184. https://doi.org/10.1016/j.proeng.2017.04.083

    Article  CAS  Google Scholar 

  110. CHENG Hai-dong, MA Xiao-gang, HAN Bing et al (2022). Removal of oxide scale on weld surface of pipe fittings by vibration assisted magnetic needle magnetic Grindina. Surf Technol. 51(08):400–407+459. https://doi.org/10.16490/j.cnki.issn.1001-3660.2022.08.036

  111. Chen Yan, Yugang H, Yini L et al (2019) A magnetic needle magnetic grinding method and device for complex shape workpieces [p].Chinese patent: CN110000688A. 2019.07.12

  112. Xu H, Kang R, Zhu X et al (2020) Study and analysis of removing the carbon deposition on the inner surface of a turbo-shaft by chemically assisted magnetic grinding. Front Mater 7. https://doi.org/10.3389/fmats.2020.00232

  113. Li X, Yu Q, Zhou X et al (2023) Magnetic sensing technology of fiber optic interferometer based on magnetic fluid: a review. Measurement 216. https://doi.org/10.1016/j.measurement.2023.112929

  114. Umehara N, Hayashi T, Kato K (1995) In situ observation of the behavior of abrasives in magnetic fluid grinding. J Magn Magn Mater 149:181–184

    Article  ADS  CAS  Google Scholar 

  115. Umehara N, Kalpakjian S (1994) Magnetic fluid grinding – a new technique for finishing advanced ceramics. CIRP Ann 43(1):185–188. https://doi.org/10.1016/s0007-8506(07)62192-1

    Article  Google Scholar 

  116. Lee R-T, Hwang Y-C, Chiou Y-C (2009) Dynamic analysis and grinding tracks in the magnetic fluid grinding system. Precis Eng 33(1):81–90. https://doi.org/10.1016/j.precisioneng.2008.04.001

    Article  Google Scholar 

  117. Lee R-T, Hwang Y-C, Chiou Y-C (2009) Dynamic analysis and grinding tracks in the magnetic fluid grinding system. Precis Eng 33(1):91–98. https://doi.org/10.1016/j.precisioneng.2008.04.004

    Article  Google Scholar 

  118. Umehara N, Kirtane T, Gerlick R et al (2006) A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). Int J Mach Tools Manuf 46(2):151–169. https://doi.org/10.1016/j.ijmachtools.2005.04.015

    Article  Google Scholar 

  119. Jiang M, Komanduri R (1997) Application of Taguchi method for optimization of finishing conditions in magnetic float polishing (MFP). Wear 213:59–71

    Article  CAS  Google Scholar 

  120. .H.C. Childs D J M (2001) Wear and cost issues in magnetic fluid grinding. Wear 249(2001):509–516

  121. Umehara N, Komanduri R (1996) Magnetic fluid grinding of HIP-Si3N4 rollers. Wear 192:85–93

    Article  CAS  Google Scholar 

  122. Zhang B, Nakajima A (2003) Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation. Precis Eng 27:1–8

    Article  Google Scholar 

  123. Suzuki H, Kodera S, Hara S et al (1989) Magnetic field-assisted polishing——application to a curved surface. Precis Eng:197–202

  124. Suzuki H, Okada M, Lin W et al (2014) Fine finishing of ground DOE lens of synthetic silica by magnetic field-assisted polishing. CIRP Ann 63(1):313–316. https://doi.org/10.1016/j.cirp.2014.03.027

    Article  Google Scholar 

  125. Kumar S, Sehgal R, Wani M F et al (2021) Stabilization and tribological properties of magnetorheological (MR) fluids: a review. J Magn Magn Mater 538. https://doi.org/10.1016/j.jmmm.2021.168295

  126. Shlyago Y I, Bibik E E, V.S.Evstishenkov et al (1978) Use of magnetorheological liquids with an abrasive filler for the finishing of glass. Glass Ceram 35(1). https://doi.org/10.1007/BF00695095

  127. Zhao F, Zhang Z, Yang J et al (2023) Advanced nonlinear rheology magnetorheological finishing: a review. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2023.06.006

    Article  Google Scholar 

  128. Liu S, Wang H, Hou J et al (2022) Morphology characterization of polishing spot and process parameters optimization in magnetorheological finishing. J Manuf Process 80:259–272. https://doi.org/10.1016/j.jmapro.2022.06.008

    Article  Google Scholar 

  129. Liu H, Cheng J, Wang T et al (2019) Magnetorheological finishing of an irregular-shaped small-bore complex component using a small ball-end permanent-magnet polishing head. Nanotechnol Precis Eng 2(3):125–129. https://doi.org/10.1016/j.npe.2019.10.001

    Article  Google Scholar 

  130. Ghosh G, Sidpara A, Bandyopadhyay PP (2021) Experimental and theoretical investigation into surface roughness and residual stress in magnetorheological finishing of OFHC copper. J Mater Process Technol 288. https://doi.org/10.1016/j.jmatprotec.2020.116899

  131. Arora K, Singh AK (2021) Theoretical and experimental investigation on surface roughness of straight bevel gears using a novel magnetorheological finishing process. Wear 476. https://doi.org/10.1016/j.wear.2021.203693

  132. Yadav RD, Singh AK, Arora K (2020) Parametric analysis of magnetorheological finishing process for improved performance of gear profile. J Manuf Process 57:254–267. https://doi.org/10.1016/j.jmapro.2020.06.024

    Article  Google Scholar 

  133. Luo H, Guo M, Yin S et al (2018) An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl Surface Sci 444:569–577. https://doi.org/10.1016/j.apsusc.2018.03.091

    Article  ADS  CAS  Google Scholar 

  134. Wang W, Ji S, Zhao J (2023) Review of magnetorheological finishing on components with complex surfaces. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-11611-x

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gu Y, Kang M, Lin J et al (2021) Non-resonant vibration-assisted magnetorheological finishing. Precis Eng 71:263–281. https://doi.org/10.1016/j.precisioneng.2021.03.016

    Article  Google Scholar 

  136. Liang H, Yan Q, Lu J et al (2019) Material removal mechanisms in chemical-magnetorheological compound finishing. Int J Adv Manuf Technol 103(1–4):1337–1348. https://doi.org/10.1007/s00170-019-03594-5

    Article  Google Scholar 

  137. Ghasemi SH, Hantehzadeh MR, Sabbaghzadeh J et al (2012) Designing a plano-convex aspheric lens for fiber optics collimator. Opt Lasers Eng 50(2):293–296. https://doi.org/10.1016/j.optlaseng.2011.07.014

    Article  Google Scholar 

  138. Fu X, Duan F, Jiang J et al (2022) Optical design of a broadband spectrometer with compact structure based on echelle and concave gratings. Opt Lasers Eng 151. https://doi.org/10.1016/j.optlaseng.2021.106926

  139. Beaucamp A, Simon P, Charlton P et al (2017) Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. Int J Mach Tools Manuf 115:29–37. https://doi.org/10.1016/j.ijmachtools.2016.11.006

    Article  Google Scholar 

  140. Natarajan Y, Murugesan PK, Mohan M et al (2020) Abrasive water jet machining process: a state of art of review. J Manuf Process 49:271–322. https://doi.org/10.1016/j.jmapro.2019.11.030

    Article  Google Scholar 

  141. Yang L, Zhang X, Chen Y et al (2007) Optimization of removal function for magnetorheological jet polishing, 3rd international symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies. 6722(6722). https://doi.org/10.1117/12.783038

  142. Yang H, Cheng H, Wu H et al (2017) Electromagnetic optimization of the integrated magnetorheological jet polishing tool and its application in millimeter-scale discontinuous structure processing. Appl Opt 56(11):3162–3170. https://doi.org/10.1364/AO.56.003162

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Kordonski W, Shorey A, Sekeres A (2003) New magnetically assisted finishing method: material removal with magnetorheological fluid jet. Opt Manuf Test V:107–114

    Google Scholar 

  144. Kordonski W I, Shorey A B, Tricard M (2006) Magnetorheological Jet „MR JetTM… finishing technology. JANUARY 128:20–26. https://doi.org/10.1115/1.2140802

  145. Kordonski W, Shorey A (2016) Magnetorheological (MR) jet finishing technology. J Intell Mater Syst Struct 18(12):1127–1130. https://doi.org/10.1177/1045389x07083139

    Article  Google Scholar 

  146. Tricard M, Kordonski WI, Shorey AB et al (2006) Magnetorheological jet finishing of conformal, freeform and steep concave optics. CIRP Ann 55(1):309–312. https://doi.org/10.1016/s0007-8506(07)60423-5

    Article  Google Scholar 

  147. Kordonski, Webster WI (2001) Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid [p]. European Patent: 01127843.9.2001.11.22

  148. Kordonski, Webster WI (1999) System for abrasive jet shaping and polishing of a surface using magnetorheological fluid [p]. International patent: WO 99/48643.1999.9.30

  149. Li P-y A, Cheung M-f M, Tong H et al (2014) Design and implementation of a technique for iterative magnetorheological jet polishing. Int J Optomechatronics 8(3):195–205. https://doi.org/10.1080/15599612.2014.915603

    Article  ADS  Google Scholar 

  150. Kim W-B, Lee S-H, Min B-K (2004) Surface finishing and evaluation of three-dimensional silicon microchannel using magnetorheological fluid. Trans ASME 126:772–778. https://doi.org/10.1115/1.1811113

    Article  Google Scholar 

  151. Yang H, Cheng H, Feng Y et al (2018) Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing. Appl Opt 57(13):3377–3384. https://doi.org/10.1364/AO.57.003377

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Jha S, Jain VK (2004) Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. Int J Mach Tools Manuf 44(10):1019–1029. https://doi.org/10.1016/j.ijmachtools.2004.03.007

    Article  Google Scholar 

  153. Jha S, Jain VK, Komanduri R (2006) Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Technol 33(7–8):725–729. https://doi.org/10.1007/s00170-006-0502-x

    Article  Google Scholar 

  154. Jha S, Jain VK (2006) Nanofinishing of silicon nitride workpieces using magnetorheological abrasive flow finishing. Nano Manuf 1:17–25

    CAS  Google Scholar 

  155. Jha S, Jain VK (2008) Rheological characterization of magnetorheological polishing fluid for MRAFF. Int J Adv Manuf Technol 42(7–8):656–668. https://doi.org/10.1007/s00170-008-1637-8

    Article  Google Scholar 

  156. Nagdeve L, Jain VK, Ramkumar J (2017) Preliminary investigations into nano-finishing of freeform surface (femoral) using inverse replica fixture. Int J Adv Manuf Technol 100(5–8):1081–1092. https://doi.org/10.1007/s00170-017-1459-7

    Article  Google Scholar 

  157. Sharma VK (2021) Modeling and analysis of a novel rotational magnetorheological abrasive flow finishing process. Int J Lightweight Mat Manuf 4(3):290–301. https://doi.org/10.1016/j.ijlmm.2021.02.001

    Article  Google Scholar 

  158. Das M, Jain VK, Ghoshdastidar PS (2011) Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int J Adv Manuf Technol 62(1–4):405–420. https://doi.org/10.1007/s00170-011-3808-2

    Article  Google Scholar 

  159. Kheradmand S, Esmailian M, Fatahy A (2016) A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow. Results Phys 6:568–580. https://doi.org/10.1016/j.rinp.2016.08.014

    Article  ADS  Google Scholar 

  160. Das M, Jain VK, Ghoshdastidar PS (2011) The out-of-roundness of the internal surfaces of stainless steel tubes finished by the rotational–magnetorheological abrasive flow finishing process. Mater Manuf Process 26(8):1073–1084. https://doi.org/10.1080/10426914.2010.537141

    Article  CAS  Google Scholar 

  161. Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178. https://doi.org/10.1016/j.precisioneng.2015.04.014

    Article  Google Scholar 

  162. Choopani Y, Razfar MR, Khajehzadeh M et al (2022) Design and development of ultrasonic assisted-rotational magnetorheological abrasive flow finishing (UA-RMRAFF) process. Appl Acoustics 197. https://doi.org/10.1016/j.apacoust.2022.108950

  163. Mohseni-Mofidi S, Pastewka L, Teschner M et al (2022) Magnetic-assisted soft abrasive flow machining studied with smoothed particle hydrodynamics. Appl Math Modell 101:38–54. https://doi.org/10.1016/j.apm.2021.07.015

    Article  MathSciNet  Google Scholar 

  164. Shimada K, Wu Y, Wong YC (2003) Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid (MCF). J Magn Magn Mater 262(2):242–247. https://doi.org/10.1016/s0304-8853(02)01497-x

    Article  ADS  CAS  Google Scholar 

  165. Shimada K, Shuchi S, Shibayama A et al (2004) Effect of a magnetic cluster on the magnetic pressure of a magnetic compound fluid. Fluid Dyn Res 34(1):21–32. https://doi.org/10.1016/j.fluiddyn.2003.09.002

    Article  ADS  Google Scholar 

  166. Sato T, Wu YB, Lin WM et al (2009) Study of three-dimensional polishing using magnetic compound fluid (MCF). Adv Mater Res 76–78:288–293. https://doi.org/10.4028/www.scientific.net/AMR.76-78.288

    Article  Google Scholar 

  167. Sato T, Wu YB, Lin WM et al (2010) Study of dynamic magnetic field assisted finishing for metal mold using magnetic compound fluid (MCF). Key Eng Mater 447–448:258–262. https://doi.org/10.4028/www.scientific.net/KEM.447-448.258

    Article  CAS  Google Scholar 

  168. Jiao L, Wu Y, Wang X et al (2013) Fundamental performance of magnetic compound fluid (MCF) wheel in ultra-fine surface finishing of optical glass. Int J Mach Tools Manuf 75:109–118. https://doi.org/10.1016/j.ijmachtools.2013.09.003

    Article  Google Scholar 

  169. Feng M, Wu Y, Wang Y et al (2020) Investigation on the polishing of aspheric surfaces with a doughnut-shaped magnetic compound fluid (MCF) tool using an industrial robot. Precis Eng 61:182–193. https://doi.org/10.1016/j.precisioneng.2019.09.018

    Article  Google Scholar 

  170. Feng M, Wu Y, Wang Y et al (2020) Effect of the components of magnetic compound fluid (MCF) slurry on polishing characteristics in aspheric-surface finishing with the doughnut-shaped MCF tool. Precis Eng 65:216–229. https://doi.org/10.1016/j.precisioneng.2020.04.021

    Article  Google Scholar 

  171. Feng M, Wu YB, Bitoh T et al (2018) Fundamental Investigation on the polishing aspheric elements with doughnut-shaped MCF slurry. Key Eng Mater 792:179–184. https://doi.org/10.4028/www.scientific.net/KEM.792.179

    Article  Google Scholar 

  172. Nomura M, Ozasa K, Fujii T et al (2022) Development of ultrasonic vibration-assisted magnetic compound fluid (MCF) polishing technology. Int J Autom Technol 16(1):71–77. https://doi.org/10.20965/ijat.2022.p0071

    Article  Google Scholar 

  173. Qian C, Tian Y, Fan Z et al (2022) Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles. Smart Mater Struct 31(9). https://doi.org/10.1088/1361-665X/ac7bbd

  174. Ren Y, Yang S, Huang X et al (2021) Research on the rheological characteristic of magnetorheological shear thickening fluid for polishing process. Int J Adv Manuf Technol 117(1–2):413–423. https://doi.org/10.1007/s00170-021-07706-y

    Article  Google Scholar 

  175. Zhou D, Huang X, Ming Y et al (2021) Material removal characteristics of magnetic-field enhanced shear thickening polishing technology. J Market Res 15:2697–2710. https://doi.org/10.1016/j.jmrt.2021.09.092

    Article  CAS  Google Scholar 

  176. Ming Y, Huang XM, Zhou DD et al (2022) Rheological properties of magnetic field-assisted thickening fluid and high-efficiency spherical polishing of ZrO2 ceramics. Int J Adv Manuf Technol 121(1–2):1049–1061. https://doi.org/10.1007/s00170-022-09344-4

    Article  Google Scholar 

  177. Li J, Fan Z, Yang Z et al (2023) Simulation and modeling of magnetorheological shear thickening polishing processes for slender tube. J Mater Res ogy. https://doi.org/10.1016/j.jmrt.2023.05.226

    Article  Google Scholar 

  178. Gao WQ, Yan QS, Liu Y et al (2010) Parametric study of micro machining three dimensional microstructure with the tiny-grinding wheel based on the EMR effect. Key Eng Mater 447–448:193–197. https://doi.org/10.4028/www.scientific.net/KEM.447-448.193

    Article  Google Scholar 

  179. Lu JB, Yan QS, Tian H et al (2010) Effect of abrasive on the machining performance the EMR-effect-based tiny-grinding wheel. Adv Mater Res 135:24–29. https://doi.org/10.4028/www.scientific.net/AMR.135.24

    Article  CAS  Google Scholar 

  180. Hong T,Qiusheng Y,Jiabin L, et al. (2007) Foundational study on micro machining with instantaneous tiny grinding wheel based on electro-magneto-rheological effect[J]. Guangdong Univ. of Technology (China); Veeco Instruments, Inc. (United States); Institute of Optics and Electronics, CAS (China);Institute of Electrical Engineering (China);Rutherford Appleton Lab. (United Kingdom) 6724. https://doi.org/10.1117/12.782682

  181. Zhu Y, Umehara N, Ido Y et al (2006) Computer simulation of structures and distributions of particles in MAGIC fluid. J Magn Magn Mater 302(1):96–104. https://doi.org/10.1016/j.jmmm.2005.08.015

    Article  ADS  CAS  Google Scholar 

  182. Hagiwara S, Kawashima N, Umehara N et al (2003) Proposal for die polishing using a new bonding abrasive type grinding stone: development of MAGIC grinding stone. Mach Sci Technol 7(2):267–279. https://doi.org/10.1081/mst-120022781

    Article  Google Scholar 

  183. Umehara N, Shibata I, Edamura K (1999) New polishing method with magnetic congelation liquid. J Intell Mater Syst Struct 10:620–624

    Article  Google Scholar 

  184. Xingai Y, gang Y, Shiying W et al (2013) The utility model relates to a surface processing equipment and process for a long circular inner tube [p]. Chinese patent: CN101982299B.2013.02.27

  185. Zhaokun Y, Xingai Y, Ruipeng G et al (2022) Magnetic honing process of long diameter stainless steel inner surface [J]. Mech Electr Eng. 39(05):705–712

    Google Scholar 

  186. Ping Y, Xingai Y, Hui Y (2016) Experimental study on polishing inner wall of stainless steel pipe with permanent magnet rotor abrasives. Modern Manuf Eng (01):100–104. https://doi.org/10.16731/j.cnki.1671-3133.2016.01.019

  187. Singh Gill J, Singh L, Singh P (2022) Analyses of rate of material removal during magnetic abrasive finishing of stainless steel SS304 using RSM method. Mater Today: Proceedings 60:2117–2123. https://doi.org/10.1016/j.matpr.2022.02.039

    Article  CAS  Google Scholar 

  188. Seok J, Kim Y-J, Jang K-I et al (2007) A study on the fabrication of curved surfaces using magnetorheological fluid finishing. Int J Mach Tools Manuf 47(14):2077–2090. https://doi.org/10.1016/j.ijmachtools.2007.05.007

    Article  Google Scholar 

  189. Jiao A, Zhang G, Liu B et al (2020) Study on improving hole quality of 7075 aluminum alloy based on magnetic abrasive finishing. Adv Mech Eng 12(6). https://doi.org/10.1177/1687814020932006

  190. Wang C, Loh YM, Cheung CF et al (2022) Shape-adaptive magnetic field-assisted batch polishing of three-dimensional surfaces. Precis Eng 76:261–283. https://doi.org/10.1016/j.precisioneng.2022.04.003

    Article  Google Scholar 

  191. Ghosh G, Sidpara A, Bandyopadhyay PP (2021) Theoretical analysis of magnetorheological finishing of HVOF sprayed WC-Co coating. Int J Mech Sci 207. https://doi.org/10.1016/j.ijmecsci.2021.106629

  192. He X, Jin H, Zhou C et al (2022) Modeling of material removal in magnetic finishing based on Maxwell’s stress tensor theory and its experimental validation. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2022.117808

    Article  Google Scholar 

  193. Kordonski W, Golini D (1999) Progress update in magnetorheological finishing. Int J Modern Phys B 13:205–2212

    Article  Google Scholar 

  194. Guo H, Wu Y, Lu D et al (2014) Effects of pressure and shear stress on material removal rate in ultra-fine polishing of optical glass with magnetic compound fluid slurry. J Mater Process Technol 214(11):2759–2769. https://doi.org/10.1016/j.jmatprotec.2014.06.014

    Article  Google Scholar 

  195. Liu J, Li X, Zhang Y et al (2020) Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl Surface Sci 504. https://doi.org/10.1016/j.apsusc.2019.144492

  196. Wang T, Cheng H-B, Dong Z-C et al (2013) Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid. J Mater Process Technol 213(9):1532–1537. https://doi.org/10.1016/j.jmatprotec.2013.03.017

    Article  Google Scholar 

  197. Wang C, Loh YM, Cheung CF et al (2022) Magnetic field-assisted batch superfinishing on thin-walled components. Int J Mech Sci 223. https://doi.org/10.1016/j.ijmecsci.2022.107279

  198. Liu S, Wang H, Zhang Q et al (2020) Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik 206. https://doi.org/10.1016/j.ijleo.2020.164368

  199. Gao Y, Zhao Y, Zhang G et al (2020) Modeling of material removal in magnetic abrasive finishing process with spherical magnetic abrasive powder. Int J Mech Sci 177. https://doi.org/10.1016/j.ijmecsci.2020.105601

  200. Li C, Zhang F, Meng B et al (2017) Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram Int 43(3):2981–2993. https://doi.org/10.1016/j.ceramint.2016.11.066

    Article  CAS  Google Scholar 

  201. Kum CW, Sato T, Guo J et al (2018) A novel media properties-based material removal rate model for magnetic field-assisted finishing. Int J Mech Sci 141:189–197. https://doi.org/10.1016/j.ijmecsci.2018.04.006

    Article  Google Scholar 

  202. Li W, Li X, Yang S et al (2018) A newly developed media for magnetic abrasive finishing process: material removal behavior and finishing performance. J Mater Process Technol 260:20–29. https://doi.org/10.1016/j.jmatprotec.2018.05.007

    Article  Google Scholar 

  203. Misra A, Pandey PM, Dixit US (2017) Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process. Int J Mech Sci 131–132:853–867. https://doi.org/10.1016/j.ijmecsci.2017.07.023

    Article  Google Scholar 

  204. Prakash C, Singh S, Pramanik A et al (2021) Experimental investigation into nano-finishing of β-TNTZ alloy using magnetorheological fluid magnetic abrasive finishing process for orthopedic applications. J Mater Res Technol 11:600–617. https://doi.org/10.1016/j.jmrt.2021.01.046

    Article  CAS  Google Scholar 

  205. Zhang J, Chaudhari A, Wang H (2019) Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J Manuf Process 45:710–719. https://doi.org/10.1016/j.jmapro.2019.07.044

    Article  Google Scholar 

  206. Qin D, Wu J, Ye M et al (2022) Sulfuric acid modified magnetorheological finishing of polycrystalline magnesium aluminate spinel. Mater Sci Semiconduct Process 152. https://doi.org/10.1016/j.mssp.2022.107098

Download references

Funding

The work was co-supported by the National Natural Science Foundation of China (grant no. 52075362) and the Central Government Guides Local Foundation for Science and Technology Development (grant no. YDZJSX2022B004 and YDZJSX2022A020).

Author information

Authors and Affiliations

Authors

Contributions

Zhaokun Yan designed and performed the manuscript, analyzed the data, and drafted the manuscript. Shengqiang Yang conceived and supervised the study, and edited the manuscript. Yonggang Li analyzed the data. Wenhui Li and Xiuhong Li Provide fund support. Xingai Yao performed the experiments. All authors read and approved the manuscript.

Corresponding author

Correspondence to Shengqiang Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have consent for publication.

Conflict of interest

The authors declare no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Yang, S., Li, Y. et al. Magnetic field-assisted finishing: mechanism, application, and outlook. Int J Adv Manuf Technol 131, 2719–2758 (2024). https://doi.org/10.1007/s00170-023-12283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12283-3

Keywords

Navigation