Skip to main content

Advertisement

Log in

Rheological properties of magnetic field-assisted thickening fluid and high-efficiency spherical polishing of ZrO2 ceramics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Shear thickening polishing technology using non-Newtonian polishing fluids is a low-cost, low-damage polishing method for the ultra-precision machining of complex curved surfaces. However, the low polishing efficiency and poorly controlled viscosity of traditional shear thickening polishing fluids significantly limit their practical applications. In this study, a novel weak magnetic field-assisted shear thickening polishing fluid (WMFA-STPF) containing carbonyl iron particles, which utilized a weak magnetorheological effect to promote the shear thickening process, was developed, and its rheological characteristics were investigated. The obtained results revealed that WMFA-STPF exhibited good fluidity at low shear rates and enhanced thickening characteristics in the working shear rate range. To verify the high efficiency, high quality, and uniform polishing ability of WMFA-STP technology applied to the spherical surface of a zirconia ceramic workpiece, contrast polishing experiments were performed. After 75 min of polishing, the surface damage was effectively mitigated; the surface quality and uniformity were significantly improved; and the material removal rate increased by 156% up to 7.82 μm/h. Hence, the WMFA-STP method can be successfully utilized for the high-efficiency high-quality polishing of hard and brittle ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD et al (2020) Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater 36(4):e126–e139. https://doi.org/10.1016/j.dental.2020.01.004

    Article  Google Scholar 

  2. Ghosh G, Sidpara A, Bandyopadhyay PP (2019) An investigation into the wear mechanism of zirconia-alumina polishing pad under different environments in shape adaptive grinding of WC-Co coating. Wear 428–429:223–236. https://doi.org/10.1016/j.wear.2019.03.020

    Article  Google Scholar 

  3. Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: Basic properties and clinical applications. J Dent 35(11):819–826. https://doi.org/10.1016/j.jdent.2007.07.008

    Article  Google Scholar 

  4. Roualdes O, Duclos M-E, Gutknecht D, Frappart L, Chevalier J, Hartmann DJ (2010) In vitro and in vivo evaluation of an alumina–zirconia composite for arthroplasty applications. Biomaterial 31(8):2043–2054. https://doi.org/10.1016/j.biomaterials.2009.11.107

    Article  Google Scholar 

  5. Oetzel C, Clasen R (2006) Preparation of zirconia dental crowns via electrophoretic deposition. J Mater Sci 41(24):8130–8137. https://doi.org/10.1007/s10853-006-0621-7

    Article  Google Scholar 

  6. Suzuki H, Okada M, Namba Y, Goto T (2019) Superfinishing of polycrystalline YAG ceramic by nanodiamond slurry. CIRP Ann 68(1):361–364. https://doi.org/10.1016/j.cirp.2019.04.062

    Article  Google Scholar 

  7. Wan L, Li L, Deng Z, Deng Z, Liu W (2019) Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics. J Manuf Process 47:41–51. https://doi.org/10.1016/j.jmapro.2019.09.024

    Article  Google Scholar 

  8. Zhang X, Kang Z, Li S, Shi Z, Wen D, Jiang J, Zhang Z (2019) Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics. Ceram Int 45(15):18487. https://doi.org/10.1016/j.ceramint.2019.06.067

    Article  Google Scholar 

  9. Zucuni CP, Pereira GKR, Valandro LF (2020) Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations. J Mech Behav Biomed Mater 103:103528. https://doi.org/10.1016/j.jmbbm.2019.103528

    Article  Google Scholar 

  10. Zucuni CP, Dapieve KS, Rippe MP, Pereira GKR, Bottino MC, Valandro LF (2019) Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. J Mech Behav Biomed Mater 93:222–229. https://doi.org/10.1016/j.jmbbm.2019.02.013

    Article  Google Scholar 

  11. Fiocchi AA, de Angelo Sanchez LE, Lisboa-Filho PN, Fortulan CA (2016) The ultra-precision Ud-lap grinding of flat advanced ceramics. J Mater Process Tech 231:336–356. https://doi.org/10.1016/j.jmatprotec.2015.10.003

    Article  Google Scholar 

  12. Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178. https://doi.org/10.1016/j.precisioneng.2015.04.014

    Article  Google Scholar 

  13. Wei H, Gao H, Wang X (2019) Development of novel guar gum hydrogel based media for abrasive flow machining: shear-thickening behavior and finishing performance. Int J Mech Sci 157–158:758–772. https://doi.org/10.1016/j.ijmecsci.2019.05.022

    Article  Google Scholar 

  14. Gürgen S, Sert A (2019) Polishing operation of a steel bar in a shear thickening fluid medium. Compos Part B - Eng 175:107127. https://doi.org/10.1016/j.compositesb.2019.107127

    Article  Google Scholar 

  15. Nguyen D (2020) Simulation and experimental study on polishing of spherical steel by non-Newtonian fluids. Int J Adv Manuf Tech 107(6):763–773. https://doi.org/10.1007/s00170-020-05055-w

    Article  Google Scholar 

  16. Shao Q, Lyu B, Yuan J, Wang X, Ke M, Zhao P (2021) Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade. J Mater Res Technol 11:72–84. https://doi.org/10.1016/j.jmrt.2020.12.112

    Article  Google Scholar 

  17. Li M, Lyu B, Yuan J, Dong C, Dai W (2015) Shear-thickening polishing method. Int J Mach Tool Manuf 94:88–99. https://doi.org/10.1016/j.ijmachtools.2015.04.010

    Article  Google Scholar 

  18. Li M, Huang Z, Dong T, Mao M, Lyu B, Yuan J (2018) Surface integrity of bearing steel element with a new high-efficiency shear thickening polishing technique. Procedia CIRP 71:313–316. https://doi.org/10.1016/j.procir.2018.05.030

    Article  Google Scholar 

  19. Li M, Karpuschewski B, Ohmori H et al (2021) Adaptive shearing-gradient thickening polishing (AS-GTP) and subsurface damage inhibition. International J Mach Tool Manuf 160:103651. https://doi.org/10.1016/j.ijmachtools.2020.103651

    Article  Google Scholar 

  20. Li M, Liu M, Riemer O, Song F, Lyu B (2021) Anhydrous based shear-thickening polishing of KDP crystal. Chinese J Aeronaut 34(6):90–99. https://doi.org/10.1016/j.cja.2020.09.019

    Article  Google Scholar 

  21. Li M, Xie J (2022) Green-chemical-jump-thickening polishing for silicon carbide. Ceram Int 48(1):1107–1124. https://doi.org/10.1016/j.ceramint.2021.09.196

    Article  Google Scholar 

  22. Zhu WL, Beaucamp A (2020) Non-Newtonian fluid based contactless sub-aperture polishing. CIRP Ann 69(1):293–296. https://doi.org/10.1016/j.cirp.2020.04.093

    Article  Google Scholar 

  23. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int J Adv Manuf Tech 102(5–8):2617–2632. https://doi.org/10.1007/s00170-019-03367-0

    Article  Google Scholar 

  24. Yang M, Li C, Zhang Y et al (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.00

    Article  Google Scholar 

  25. Xu L, Lei H (2020) Nano-scale surface of ZrO2 ceramics achieved efficiently by peanut-shaped and heart-shaped SiO2 abrasives through chemical mechanical polishing. Ceram Int 6(9):13297–13306. https://doi.org/10.1016/j.ceramint.2020.02.108

    Article  Google Scholar 

  26. Dong Y, Lei H, Liu W (2020) Effect of mixed-shaped silica sol abrasives on surface roughness and material removal rate of zirconia ceramic cover. Ceram Int 46(15):23828–23833. https://doi.org/10.1016/j.ceramint.2020.06.159

    Article  Google Scholar 

  27. Heng L, Kim JS, Tu JF, Mun S (2020) Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing. Ceram Int 46(11):17335–17346. https://doi.org/10.1016/j.ceramint.2020.04.022

    Article  Google Scholar 

  28. Li M, Huang Z, Dong T, Tang C, Lyu B, Yuan J (2018) Surface quality of Zirconia (ZrO2) Parts in shear-thickening high-efficiency polishing. Procedia CIRP 77:143–146. https://doi.org/10.1016/j.procir.2018.08.256

    Article  Google Scholar 

  29. Zhang J, Wang H, Kumar AS, Jin M (2020) Experimental and theoretical study of internal finishing by a novel magnetically driven polishing tool. Int J Mach Tool Manuf 153:103552. https://doi.org/10.1016/j.ijmachtools.2020.103552

    Article  Google Scholar 

  30. Fan Z, Tian Y, Zhou Q, Shi C (2020) Enhanced magnetic abrasive finishing of Ti–6Al–4V using shear thickening fluids additives. Precis Eng 64:300–306. https://doi.org/10.1016/j.precisioneng.2020.05.001

    Article  Google Scholar 

  31. Wei M, Sun L, Zhang C, Qi P, Zhu J (2018) Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles. J Mater Sci 54:346–355. https://doi.org/10.1007/s10853-018-2873-4

    Article  Google Scholar 

  32. Li M, Lyu B, Yuan J, Yao W, Zhou F, Zhong M (2016) Evolution and equivalent control law of surface roughness in shear-thickening polishing. Int J Mach Tool Manuf 108:113–126. https://doi.org/10.1016/j.ijmachtools.2016.06.007

    Article  Google Scholar 

  33. Zhang X, Li W, Gong X (2010) Thixotropy of MR shear-thickening fluids. Smart Mater Struct 19(12):125012. https://doi.org/10.1088/0964-1726/19/12/125012

    Article  Google Scholar 

  34. Singh AK, Jha S, Pandey PM (2012) Nanofinishing of fused silica glass using ball-end magnetorheological finishing tool. Mater Manuf Process 27(10):1139–1144. https://doi.org/10.1080/10426914.2011.654159

    Article  Google Scholar 

  35. Peng GR, Li W, Tian TF, Ding J, Nakano M (2014) Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids. Korea-Aust Rheol J 26(2):149–158. https://doi.org/10.1007/s13367-014-0015-3

    Article  Google Scholar 

  36. Deng XJ, Klein B, Hallbom DJ, de Wit B, Zhang JX (2018) Influence of particle size on the basic and time-dependent rheological behaviors of cemented paste backfill. J Mater Eng Perform 27(7):3478–3487. https://doi.org/10.1007/s11665-018-3467-7

    Article  Google Scholar 

  37. Wu XJ, Wang Y, Yang W, Xie BH, Yang MB, Dan W (2012) A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane. Soft Matter 8(40):10457. https://doi.org/10.1039/c2sm25668a

    Article  Google Scholar 

  38. Tian Y, Jiang J, Meng Y, Wen S (2010) A shear thickening phenomenon in magnetic field controlled-dipolar suspensions. Appl Phys Lett 97(15):151904. https://doi.org/10.1063/1.3501128

    Article  Google Scholar 

  39. Zhang X, Li W, Gong XL (2008) Study on magnetorheological shear thickening fluid. Smart Mater Struct 17(1):015051. https://doi.org/10.1088/0964-1726/17/1/015051

    Article  Google Scholar 

  40. Labanda J, Llorens J (2005) A structural model for thixotropy of colloidal dispersions. Rheol Acta 45(3):305–314. https://doi.org/10.1007/s00397-005-0035-5

    Article  Google Scholar 

  41. Chen K, Wang Y, Xuan S, Gong X (2017) A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid. J Colloid Interf Sci 497:378–384. https://doi.org/10.1016/j.jcis.2017.03.038

    Article  Google Scholar 

  42. Moctezuma RE, Donado F, Arauz-Lara JL (2013) Lateral aggregation induced by magnetic perturbations in a magnetorheological fluid based on non-Brownian particles. Phys Rev E 88(3):032305. https://doi.org/10.1103/physreve.88.032305

    Article  Google Scholar 

  43. Boczkowska A, Awietjan SF, Wejrzanowski T, Kurzydłowski KJ (2009) Image analysis of the microstructure of magnetorheological elastomers. J Mater Sci 44(12):3135–3140. https://doi.org/10.1007/s10853-009-3417-8

    Article  Google Scholar 

  44. Briscoe B, Luckham P, Zhu S (1999) Pressure influences upon shear thickening of poly(acrylamide) solutions. Rheol Acta 38(3):224–234. https://doi.org/10.1007/s003970050172

    Article  Google Scholar 

  45. Jiang W, Ye F, He Q, Gong X, Feng J, Lu L, Xuan S (2014) Study of the particles’ structure dependent rheological behavior for polymer nanospheres based shear thickening fluid. J Colloid Interf Sci 413:8–16. https://doi.org/10.1016/j.jcis.2013.09.020

    Article  Google Scholar 

  46. Saraswathamma K, Jha S, Venkateswara Rao P (2017) Rheological behaviour of magnetorheological polishing fluid for Si polishing. Mater Today Proc 4(2):1478–1491. https://doi.org/10.1016/j.matpr.2017.01.170

    Article  Google Scholar 

  47. Gürgen S, Sofuoğlu MA, Kuşhan MC (2019) Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater Struct 28(3):035027. https://doi.org/10.1088/1361-665x/ab018c

    Article  Google Scholar 

  48. Ball RC, Melrose JR (1999) Shear thickening in colloidal dispersions. AIP Conf Proc 62(10):27–32. https://doi.org/10.1063/1.58445

    Article  Google Scholar 

  49. Zhao P, Fu Y, Li H, Zhang C, Liu Y (2019) Three-dimensional simulation study on the aggregation behavior and shear properties of magnetorheological fluid. Chem Phys Lett 722:74–79. https://doi.org/10.1016/j.cplett.2019.02.042

    Article  Google Scholar 

  50. Fernandez N, Mani R, Rinaldi D et al (2013) Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys Rev Lett 111(10):108301. https://doi.org/10.1103/physrevlett.111.108301

    Article  Google Scholar 

  51. Karthikeyan S, Mohan B, Kathiresan S (2021) Influence of rotational magnetorheological abrasive flow finishing process on biocompatibility of stainless steel 316L. J Materi Eng Perform 30(2):1545–1553. https://doi.org/10.1007/s11665-020-05442-0

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China and the Natural Science Foundation of Hunan Province (grant numbers 51975203 and 2021JJ30113). Author Y. Ming, X. M. Huang, D. D. Zhou, Q. Zeng, and H. Y. Li have received research support from Company Hunan University, College of Mechanical and Vehicle Engineering.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by D. D. Zhou, Q. Zeng, and H. Y. Li. The first draft of the manuscript was written by Y. Ming and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiang Ming Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, Y., Huang, X.M., Zhou, D.D. et al. Rheological properties of magnetic field-assisted thickening fluid and high-efficiency spherical polishing of ZrO2 ceramics. Int J Adv Manuf Technol 121, 1049–1061 (2022). https://doi.org/10.1007/s00170-022-09344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09344-4

Keywords

Navigation