Skip to main content
Log in

Advances in magnetic field-assisted ECM—from magnetoelectric effects to technology applications

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electrochemical machining (ECM) is widely used as a special process in the manufacturing of parts. The introduction of a magnetic field can improve manufacturing quality and increase the electrochemical reaction rate. Magnetic fields have a non-negligible influence on processes such as mass transfer, polarization, limiting current density, electrocrystallization, and anodic dissolution in electrochemical reactions. This paper provides a comprehensive review of magnetoelectrochemistry (MEC) techniques and the effect of magnetic fields on ECM. Starting from the MEC effects caused by magnetic fields acting on ECM, as well as Maxwell stress effects and magnetocaloric effect, which have not yet been studied in the field of ECM, this paper summarizes the effect of magnetic field on electrochemical reaction rate, flow field, physicochemical properties of electrolyte, and material formation in ECM, reviews existing magnetic field-assisted ECM technologies, and proposes future applications of magnetic fields in electrochemical additive manufacturing (ECAM) technologies. Finally, the paper provides a summary and outlook to serve as a reference for MEC processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Han L, Sartin M, Tian ZQ, Zhan D, Tian ZW (2020) Electrochemical nanomachining. Curr Opin Electrochem 22:80–86. https://doi.org/10.1016/j.coelec.2020.05.007

    Article  Google Scholar 

  2. Wu X, Ma Y, Wang H, Han J (2021) Research progress of micro-hole ultra-precision machining. Mech Sci Technol Aero Eng:401913–401928

  3. Kumamoto S, Fukuyama S, Nagano S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y, Nakashima Y (2022) Fabrication of three-dimensionally deformable metal structures using precision electroforming. Micromachines 13(7):1046. https://doi.org/10.3390/mi13071046

    Article  Google Scholar 

  4. Ghoshal B, Bhattacharyya B (2016) Electrochemical micromachining of microchannel using optimum scan feed rate. J manuf process 23:258–268. https://doi.org/10.1016/j.jmapro.2016.05.003

    Article  Google Scholar 

  5. Nie X, Zhang CY, Liu G, Lu HQ, Zhuang HW, Dai XR, Jiao J (2017) Effect of pulsed laser impact effect on fixed-domain electrodeposited copper grains and their surface morphology. Chin J Lasers. 44(04):135–141

    Google Scholar 

  6. Peng TF, Wang K, Li MH, Liu Y (2021) Effect of ultrasonic vibration object on machining performance of wire electrochemical micromachining. Int j adv Manuf tech 116(1):281–291. https://doi.org/10.1007/s00170-021-07396-6

    Article  Google Scholar 

  7. Giurlani W, Vizza M, Pizzetti F, Bonechi M, Savastano M, Sorace L, Stefani A, Fontanesi C, Innocenti M (2022) Magnetic field effect on the handedness of electrodeposited Heusler alloy. Applied Sciences 12(11):5640. https://doi.org/10.3390/app12115640

    Article  Google Scholar 

  8. Bi X, Meng L (2022) Electrochemical deposition of pure-nickel microstructures with controllable size. Micromachines 13(5):704. https://doi.org/10.3390/mi13050704

    Article  Google Scholar 

  9. Bi X, Zeng Y, Qu N (2021) Micro-shaping of pure aluminum by intermittent ultrasonic oscillation assisted wire electrochemical micromachining with an ultra-low-concentration mixed electrolyte. J Electrochem Soc 168(11):113503. https://doi.org/10.1149/1945-7111/ac377e

    Article  Google Scholar 

  10. Zieliński M, Burnat B, Miękoś E (2020) Effects of a constant magnetic field on the electrochemical reactions of quercetin. ChemistryOpen 9(12):1229–1235. https://doi.org/10.1002/open.202000066

    Article  Google Scholar 

  11. Zhao D, Zhu H, Zhang Z, Xu K, Gao J, Dai X, Huang L (2022) Influence of electrochemical discharge machining parameters on machining quality of microstructure. Int J Adv Manuf Technol 119(1):841–854. https://doi.org/10.1007/s00170-021-08316-4

    Article  Google Scholar 

  12. Aogaki R, Fueki K, Mukaibo T (1975) Application of MHD effect to the analysis of electrochemical reactions 1. MHD flow of an electrolyte solution in an electrode-cell with a short rectangular channel, Denki. Kagaku. oyobi. Kogyo. Butsuri. Kagaku.43(9):504-508. https://www.jstage.jst.go.jp/article/kogyobutsurikagaku/43/9/43_504/_pdf

  13. Mori S, Satoh K, Tanimoto A (1994) Electrolytic mass transfer around inclined cylinders in static magnetic fields. Electrochim. Acta. 39(18):2789–2794. https://doi.org/10.1016/0013-4686(94)E0193-4

    Article  Google Scholar 

  14. Lee J, Ragsdale SR, Gao X, White HS (1997) Magnetic field control of the potential distribution and current at microdisk electrodes. J Electroanal Chem 422(1-2):169–177. https://doi.org/10.1016/S0022-0728(96)04878-4

    Article  Google Scholar 

  15. Zhang Y, Guo P, Li S, Sun J, Wang W, Song B, Yang X, Wang X, Jiang Z, Wu G, Xu P (2022) Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. J Mater Chem A 10(4):1760–1767. https://doi.org/10.1039/d1ta09444k

    Article  Google Scholar 

  16. Qian S, Bau H (2005) MHD flow of RedOx electrolyte. Phys Fluids 17:067105. https://doi.org/10.1063/1.1933131

    Article  MATH  Google Scholar 

  17. Hu B, Yan L, Shao M (2009) Magnetic-field effects in organic semiconducting materials and devices. Adv Mater 21(14-15):1500–1516. https://doi.org/10.1002/adma.200802386

    Article  Google Scholar 

  18. Girimonte A, Stefani A, Innocenti M, Fontanesi C, Giovanardi R Influence of magnetic field on the electrodeposition and capacitive performances of MnO2. Magnetochemistry 7(2):19. https://doi.org/10.3390/magnetochemistry7020019

  19. Białostocka AM, Klekotka U, Kalska SB (2022) The influence of the substrate and external magnetic field orientation on FeNi film growth. Energies 15(10):3520. https://doi.org/10.3390/en15103520

    Article  Google Scholar 

  20. Aaboubi O, Msellak K (2017) Magnetic field effects on the electrodeposition of CoNiMo alloys. Appl Surf Sci 396:375–383. https://doi.org/10.1016/j.apsusc.2016.10.164

    Article  Google Scholar 

  21. Wang J, Bai Z, Xiao K, Li X, Liu Q, Liu X, Wu J, Lu L, Dong C (2020) Effect of static magnetic field on mold corrosion of printed circuit boards. Bioelectrochemistry 131:107394. https://doi.org/10.1016/j.bioelechem.2019.107394

    Article  Google Scholar 

  22. Chu H, Li Z, Xi X, Zhang Y, Zhao W (2022) Adaptive planetary control with auxiliary magnetic field method for fast EDM drilling. Int j adv manuf tech 120(3):2217–2227. https://doi.org/10.1007/s00170-022-08939-1

    Article  Google Scholar 

  23. Ge XC, Tang L, Zhai KD, Yan YN, Zhou JK (2022) Liquid-driven rotating magnetic field assisted electrolytic machining of multi-stage internal tapered holes. Electromachining & Mould(04):30-35.

  24. Rokicki R, Hryniewicz T (2012) Enhanced oxidation-dissolution theory of electropolishing. Trans Inst Met Finish 90(4):188–196. https://doi.org/10.1179/0020296712Z.00000000031

    Article  Google Scholar 

  25. Hu C, Zhao R, Ali S, Wang Y, Pang S, Li J, Tang S (2022) Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process. J mater sci technol 101:118–127. https://doi.org/10.1016/j.jmst.2021.06.020

    Article  Google Scholar 

  26. Ming PY, Lv YD, Zhang Y, Wei L, Li ST (2011) Research progress of magnetoelectrochemical deposition technology. J Henan Polyt Univ: Nat Sci Ed 30(05):571–576

    Google Scholar 

  27. Long L, Ma B, Cheng P, Yun K, Gao H (2019) A comparative study on the effects of magnetic field on the anode surface roughness in the forward and reverse electrolyte feed pattern during electrochemical machining. Int J Adv Manuf Tech 101(5):1635–1650. https://doi.org/10.1007/s00170-018-3072-9

    Article  Google Scholar 

  28. Lorena MA, Monzon JMD, Coey (2014) Magnetic fields in electrochemistry: the Lorentz force. A mini-review. Electrochem Commun 42 :38-41. https://doi.org/10.1016/j.elecom.2014.02.006

  29. Weerasiri LD, Das S (2018) Characteristics of sliding bubble in aqueous electrolyte: in presence of an external magnetic field. Colloid Surface a 538:404–416. https://doi.org/10.1016/j.colsurfa.2017.11.026

    Article  Google Scholar 

  30. Huang L, Cao Y, Zhang X, Zhang J, Lei Y, Li Y, Fan Q (2021) Research on the multi-physics field coupling simulation of aero-rotor blade electrochemical machining. Sci rep 11(1):1-13. https://doi.org/10.1038/s41598-021-92066-6

  31. Skibinska K, Kutyla D, Kolczyk-Siedlecka K, Marzec MM, Zabinski P, Kowalik R (2021) Synthesis of conical Co-Fe alloys structures obtained with crystal modifier in superimposed magnetic field. Arch Civ Mech Eng 21(4):1–11. https://doi.org/10.1007/s43452-021-00315-2

    Article  Google Scholar 

  32. Liao CJ, Zhang XM, Luo ZJ (2022) Magnetic field effects on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy. J Appl Electrochem 1-15. https://doi.org/10.1007/s10800-022-01756-0

  33. Yu Y, Wei G, Ge H, Jiang L, Sun L (2017) CoNiMn magnetic films prepared by magnetic field induced codeposition technology. Surf Eng 33(7):483–491. https://doi.org/10.1080/02670844.2016.1274842

    Article  Google Scholar 

  34. Huang Y, Wu X, Nie L, Chen S, Sun Z, He Y, Liu W (2020) Mechanism of lithium electrodeposition in a magnetic field. Solid State Ionics 345:115171. https://doi.org/10.1016/j.ssi.2019.115171

    Article  Google Scholar 

  35. Zielinski M (2013) Effects of constant magnetic field on the electrodeposition reactions and cobalt-tungsten alloy structure. Mater Chem Phys 141(1):370–377. https://doi.org/10.1016/j.matchemphys.2013.05.025

    Article  Google Scholar 

  36. Nishikawa K, Saito T, Matsushima H, Ueda M (2019) Holographic interferometric microscopy for measuring Cu2+ concentration profile during Cu electrodeposition in a magnetic field. Electrochim Acta 297:1104–1108. https://doi.org/10.1016/j.electacta.2018.12.025

    Article  Google Scholar 

  37. Yu L, Wang J, Xu ZJ (2021) A perspective on the behavior of lithium anodes under a magnetic field. Small Struct 2(1):2000043. https://doi.org/10.1002/sstr.202000043

    Article  Google Scholar 

  38. Wang A, Deng Q, Deng L, Guan X, Luo J (2019) Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes. Adv Funct Mater 29(25):1902630. https://doi.org/10.1002/adfm.201902630

    Article  Google Scholar 

  39. Mogi I, Iwasaka M, Aogaki R, Takahashi K (2017) Communication-visualization of MHD micro-vortices with guanine micro-crystals. J Electrochem Soc 164(9):H584–H586. https://doi.org/10.1149/2.0711709jes

    Article  Google Scholar 

  40. Hinds G, Coey J, Lyons M (2001) Influence of magnetic forces on electrochemical mass transport. Electrochem commun 3(5):215–218. https://doi.org/10.1016/S1388-2481(01)00136-9

    Article  Google Scholar 

  41. Zhang BW, Ren ZM, Wang H (2004) Kinetic study on the magnetic orientation of grains during alloy solidification. J Metals 40(6):604–608

    Google Scholar 

  42. Huang M, Eckert K, Mutschke G (2021) Magnetic-field-assisted electrodeposition of metal to obtain conically structured ferromagnetic layers. Electrochim Acta 365:137374. https://doi.org/10.1016/j.electacta.2020.137374

    Article  Google Scholar 

  43. Huang M, Skibinska K, Zabinski P, Wojnicki M, Wloch G, Eckert K, Mutschke G (2022) On the prospects of magnetic-field-assisted electrodeposition of nano-structured ferromagnetic layers. Electrochim Acta 420:140422. https://doi.org/10.1016/j.electacta.2022.140422

    Article  Google Scholar 

  44. Pan H, Shen Y, Luan L, Lu K, Duan J, Hu B (2015) Changing the sign of exchange interaction in radical pairs to tune magnetic field effect on electrogenerated chemiluminescence. J Phys Chem C 119(15):8089–8094. https://doi.org/10.1021/acs.jpcc.5b01541

    Article  Google Scholar 

  45. Zhang JX (2022) The historical development of the electron spin hypothesis and its implications. Phys. Bulle 10:147–152

    Google Scholar 

  46. Kumar A, Capua E, Vankayala K, Fontanesi C, Naaman R (2017) Magnetless device for conducting three-dimensional spin-specific electrochemistry. Angew Chem Int edit 56(46):14587–14590. https://doi.org/10.1002/anie.201708829

    Article  Google Scholar 

  47. Pan H, Xiao X, Hu B, Shen Y, Wang M (2017) Generating huge magnetocurrent by using spin-dependent dehydrogenation based on electrochemical system. J phys Chem C 121(51):28420–28424. https://doi.org/10.1021/acs.jpcc.7b11357

    Article  Google Scholar 

  48. Gould IR, Turro NJ, Zimmt M (1984) Magnetic field and magnetic isotope effects on the products of organic reactions. Adv Phys Org chem 20:1–53. https://doi.org/10.1016/S0065-3160(08)60147-1

    Article  Google Scholar 

  49. Gauden M, Stokkum IH, Key JM, Lührs DC, Grondelle VR, Hegemann P, Kennis J (2006) Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. P natl acad Sci usa 103(29):10895–10900. https://doi.org/10.1073/pnas.0600720103

    Article  Google Scholar 

  50. Kattnig DR, Evans EW, Dejean V, Dodson CA, Wallace MI, Mackenzie SR, Timmel CR, Hore PJ (2016) Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nat chem 8(4):384–391. https://doi.org/10.1038/nchem.2447

    Article  Google Scholar 

  51. Turro N (1983) Influence of nuclear spin on chemical reactions: magnetic isotope and magnetic field effects (a review). P natl acad Sci usa 80(2):609–621. https://doi.org/10.1073/pnas.80.2.609

    Article  Google Scholar 

  52. Dubi Y (2022) Spinterface chirality-induced spin selectivity effect in bio-molecules. Chem sci 13(36):10878–10883. https://doi.org/10.1039/D2SC02565E

    Article  Google Scholar 

  53. Zouari R, Chehaidar A (2017) A review of a phenomenological model for magnetocaloric effect in ferromagnetic materials. Phase transit 90(2):167–174. https://doi.org/10.1080/01411594.2016.1168823

    Article  Google Scholar 

  54. Wang Z, Wang S, Zhang X, Li Z, Li ZA, Yu D, Zhang H, Sheng F, Gao S, Hou Y (2022) Temperature and tumor microenvironment dual responsive mesoporous magnetic nanospheres for magnetothermal effect-induced cancer theranostics. CCS Chemistry 1-17. 10.31635/ccschem.022.202201805

  55. Pan P, Lin Y, Gan Z, Luo X, Zhou W, Zhang N (2018) Magnetic field enhanced photothermal effect of Fe3O4 nanoparticles. J appl Phys 123(11):115115. https://doi.org/10.1063/1.5019598

    Article  Google Scholar 

  56. Chen JS, Huang YH, Tian ZJ, Liu ZD, He YQ (2010) Organization and properties of Ni-Al2O3 nanocomposite coatings by spray electrodeposition. J Mater Sci Eng 28(2010) 912-915+929

  57. Espinosa A, Corato RD, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. Acs Nano 10(2):2436–2446. https://doi.org/10.1021/acsnano.5b07249

    Article  Google Scholar 

  58. Song J, Wei C, Huang ZF, Liu C, Zeng L, Wang X, Xu Z (2020) A review on fundamentals for designing oxygen evolution electrocatalysts. Chem soc rev 49(7):2196–2214. https://doi.org/10.1039/c9cs00607a

    Article  Google Scholar 

  59. An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan CH (2021) Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 33(20):2006328. https://doi.org/10.1002/adma.202006328

    Article  Google Scholar 

  60. Suzuki M, Hayashi H, Mizuki T, Maekawa T, Morimoto H (2016) Efficient DNA ligation by selective heating of DNA ligase with a radio frequency alternating magnetic field. Biochem biophys rep. 8:360–364. https://doi.org/10.1016/j.bbrep.2016.10.006

    Article  Google Scholar 

  61. Niether C, Faure S, Bordet A, Deseure J, Chatenet M, Carrey J, Chaudret B, Rouet A (2018) Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat energy 3(6):476–483. https://doi.org/10.1038/s41560-018-0132-1

    Article  Google Scholar 

  62. Ghosh MK, Gao Y, Dozono H, Muramatsu K, Guan W, Yuan J, Tian C, Chen B (2018) Proposal of Maxwell stress tensor for local force calculation in magnetic body. Ieee T Magn 54(11):1–4. https://doi.org/10.1109/tmag.2018.2844310

    Article  Google Scholar 

  63. Zhang J, Hassan MR, Rallabandi B, Wang C (2019) Migration of ferrofluid droplets in shear flow under a uniform magnetic field. Soft Matter. 15(11):2439–2446. https://doi.org/10.1039/c8sm02522c

    Article  Google Scholar 

  64. Latikka M, Backholm M, Timonen JV, Ras R (2018) Wetting of ferrofluids: phenomena and control. Curr Opin Colloid In 36:118–129. https://doi.org/10.1016/j.cocis.2018.04.003

    Article  Google Scholar 

  65. Lueck J, Latz A (2018) Modeling of the electrochemical double layer and its impact on intercalation reactions. Phys Chem Chem Phys 20(44):27804–27821. https://doi.org/10.1039/c8cp05113e

    Article  Google Scholar 

  66. Zhang Y, Liang C, Wu J, Liu H, Zhang B, Jiang Z, Li S, Xu P (2020) Recent advances in magnetic field-enhanced electrocatalysis. Acs Appl Energy Mater 3(11):10303–10316. https://doi.org/10.1021/acsaem.0c02104

    Article  Google Scholar 

  67. Dunne P, Coey J (2019) Influence of a magnetic field on the electrochemical double layer. J Phys Chem C 123(39):24181–24192. https://doi.org/10.1021/acs.jpcc.9b07534

    Article  Google Scholar 

  68. Shoji E, Tanada K, Takahashi R, Isogai S, Suzuki R, Kubo M, Tsukada T, Komiya A, Fukuyama H (2021) Numerical simulation of laminar-turbulent transition in MHD convection in an electromagnetically levitated molten droplet of Cu-Co alloys under a static magnetic field. Metall Mater Trans B 52(2):896–902. https://doi.org/10.1007/s11663-021-02063-3

    Article  Google Scholar 

  69. Iida T, Matsushima H, Fukunaka Y (2007) Water electrolysis under a magnetic field. J electrochem soc 154(8):E112. https://doi.org/10.1149/1.2742807

    Article  Google Scholar 

  70. Koza JA, Muehlenhoff S, Zabinski P, Nikrityuk PA, Eckert K, Uhlemann M, Gebert A, Weier T, Schultz L, Odenbach S (2010) Hydrogen evolution under the influence of a magnetic field. Electrochim acta 56(6):2665–2675. https://doi.org/10.1016/j.electacta.2010.12.031

    Article  Google Scholar 

  71. Liu H, Pan L, Huang H, Qin Q, Li P, Wen J (2015) Hydrogen bubble growth at micro-electrode under magnetic field. J Electroanal Chem. 754:22–29. https://doi.org/10.1016/j.jelechem.2015.06.015

    Article  Google Scholar 

  72. Monzon L, Nair V, Reilly B, Coey J (2018) Magnetically-induced flow during electropolishing. J Electrochem Soc 165(13):E679–E684. https://doi.org/10.1149/2.0581813jes

    Article  Google Scholar 

  73. Zhan S, Huang Y, Zhang W, Li B, Jiang M, Wang Z, Wang J (2021) Experimental investigation on bubble growth and detachment characteristics on vertical microelectrode surface under electrode-normal magnetic field in water electrolysis. Int J Hydrogen Energy 46(74):36640–36651. https://doi.org/10.1016/j.ijhydene.2021.08.164

    Article  Google Scholar 

  74. Pullins MD, Grant KM, White H (2001) Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes. J Phys Chem B 105(37):8989–8994. https://doi.org/10.1021/jp012093s

    Article  Google Scholar 

  75. Nobuko IW, Tatsuhiro O, Jun-ichi O, Takeo O (2001) Magnetic promotion of oxygen reduction reaction with Pt catalyst in sulfuric acid solutions. Jpn J appl Phys 40(3B):L296. https://doi.org/10.1143/JJAP.40.L269

    Article  Google Scholar 

  76. Sun XK, Wu ML, Liu ZJ (2020) Influence of gradient magnetic field on the performance of passive proton exchange membrane fuel cells. Chem Ing Eng Prog 39(003):924–929

    Google Scholar 

  77. Liang WM, Ze WE, De PG (2018) Effect of rotating magnetic field on the operating performance of proton exchange membrane fuel cells. Electrochemistry 24(002):189–193

    Google Scholar 

  78. Zhao SL, Bai JJ, You ZF, Li JX (2020) Effect of a magnetic field on stress corrosion cracking of Fe-83 Ga-17 alloy. Corros Sci 167:108539. https://doi.org/10.1016/j.corsci.2020.108539

    Article  Google Scholar 

  79. Li D, Wang Q, Liu T, Li GJ, He JC (2009) Growth of diffusion layers at liquid Al–solid Cu interface under uniform and gradient high magnetic field conditions. Mater chem phys 117(2-3):504–510. https://doi.org/10.1016/j.matchemphys.2009.06.041

    Article  Google Scholar 

  80. Liu HB, Pan LM, Qin QJ, Li PF (2019) Experimental and numerical investigation of gas-liquid flow in water electrolysis under magnetic field. J Electroanal Chem 832:293–302. https://doi.org/10.1016/j.jelechem.2018.11.020

    Article  Google Scholar 

  81. Scott K, Reviews S (2018) Process intensification: an electrochemical perspective. Renew sust energy rev 81:1406–1426. https://doi.org/10.1016/j.rser.2017.05.189

    Article  Google Scholar 

  82. Xu Y, Jiang B (2021) Machining performance enhancement of deep micro drilling using electrochemical discharge machining under MHD effect. Int j adv Manuf tech 113(3):883–892. https://doi.org/10.1007/s00170-021-06657-8

    Article  Google Scholar 

  83. Tufa LT, Jeong KJ, Tan TV, Lee J (2020) Magnetic-field-induced electrochemical performance of a porous magnetoplasmonic Ag@Fe3O4 nanoassembly. Acs Appl Mater Inter 12(5):6598–6606. https://doi.org/10.1021/acsami.9b18639

    Article  Google Scholar 

  84. Katz E, Lioubashevski O, Willner I (2005) Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J am Chem Soc 127(11):3979–3988. https://doi.org/10.1021/ja044157t

    Article  Google Scholar 

  85. Wasekar NP, O'Mullane AP, Sundararajan G (2019) A new model for predicting the grain size of electrodeposited nanocrystalline nickel coatings containing sulphur, phosphorus or boron based on typical systems. J electroanal chem 833:198–204. https://doi.org/10.1016/j.jelechem.2018.11.057

    Article  Google Scholar 

  86. Udagawa C, Ueno M, Toshinari H, Maeda M, Maki S, Morimoto S, Tanimoto Y (2018) Magnetic field effects on electroless deposition of lead metal-Lorentz force effects. Bull Chem Soc Jpn 91(2):165–172. https://doi.org/10.1246/bcsj.20170238

    Article  Google Scholar 

  87. Coey J, Hinds G, Magnetic electrodeposition. J alloy Compd 326 (1-2) 238-245. 10.1016/S0925-8388(01)01313-5

  88. Dunne P, Mazza L, Coey J (2011) Magnetic structuring of electrodeposits. Phys Rev lett 107(2):024501. https://doi.org/10.1103/PhysRevLett.107.024501

    Article  Google Scholar 

  89. Dunne P, Coey J (2012) Patterning metallic electrodeposits with magnet arrays. Phys Rev B 85(22):224411. https://doi.org/10.1103/PhysRevB.85.224411

    Article  Google Scholar 

  90. Koza J, Uhlemann M, Gebert A, Schultz L (2008) The effect of magnetic fields on the electrodeposition of iron. J solid State Electr 12(2):181–192. https://doi.org/10.1007/s10008-007-0379-0

    Article  Google Scholar 

  91. Koza JA, Uhlemann M, Gebert A, Schultz L (2008) The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. J electroanal Chem 617(2):194–202. https://doi.org/10.1016/j.jelechem.2008.02.009

    Article  Google Scholar 

  92. Sueptitz R, Tschulik K, Uhlemann M, Schultz L, Gebert A (2011) Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions. Corros Sci 53(10):3222–3230. https://doi.org/10.1016/j.corsci.2011.05.070

    Article  Google Scholar 

  93. Jia WP, Jia ZY, Miao B, Wu MH, Wu CY, Numerical analysis and experiments on electrodeposition under the action of vertical magnetic field. J Dalian Univ Technol 53(10):671-677.

  94. Li YH, Chen YJ (2021) The effect of magnetic field on the dynamics of gas bubbles in water electrolysis. Sci rep-uk. 11(1):1–12. https://doi.org/10.1038/s41598-021-87947-9

    Article  MathSciNet  Google Scholar 

  95. Ling SC, Cai SW, Song XJ, Dong HY, Ning F, Ma JR, Cui TM, Lu ZP (2021) Effect of magnetic field on the anodic process of iron in sodium carbonate solution containing chloride ions. Corros & Prot 42(09):55–60

    Google Scholar 

  96. Lv ZP, Chen JJ, Xiao X, Xia SF. Effect of magnetic field on the anodic dissolution of copper in several acidic solutions. Corros & Prot 35(12):1187-1193.

  97. Wang C, Chen JM (1994) Effect of magnetic field on cathodic hydrogen precipitation and anodic dissolution during iron corrosion. J Chin Soc Corros Prot 02:123–128

    Google Scholar 

  98. Dong HY, Lv ZP (2021) Effect of magnetic field on the anodic process of iron electrodes of different sizes in sulfuric acid solution//.Proceedings of the 2021 8th Conference on Marine Materials and Corrosion Protection and 2021 2nd Conference on Durability of Reinforced Concrete and Safety of Facilities in Service.

  99. Bhattacharjee S, Lee SC (2018) Controlling oxygen-based electrochemical reactions through spin orientation. J Phys Chem C 122(1):894–901. https://doi.org/10.1021/acs.jpcc.7b10147

    Article  Google Scholar 

  100. Ren X, Wu T, Sun Y, Li Y, Xian G, Liu X, Shen C (2021) Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun 12(1):1–12. https://doi.org/10.1038/s41467-021-22865-y

    Article  Google Scholar 

  101. Pei JY, Yang F, Fu YL, Xia WW, Liu HD, Zhang RS, Zhao WS (2018) Review of papers in the 19th International Conference on Electromachining. Electromachining &Tooling (04):1-17.

  102. Ning SK, Wang RF, Ma BJ (2015) Simulation analysis of the effect of magnetic field on the flow field of electrolytic machining gap. Mach Des Manu 08:89–93

    Google Scholar 

  103. Chen L, Wang TC, Fan ZJ (2006) Experimental study on the compound magnetic field of profile electrolytic machining. J Xi’an Techno Univ (04)326-328.

  104. Li L, Ma BJ, Wang RF (2017) The coupled effect of magnetic field, electric field, and electrolyte motion on the material removal amount in electrochemical machining. Int J Adv Manuf Tech 91(9):2995–3006. https://doi.org/10.1007/s00170-017-9983-z

    Article  Google Scholar 

  105. Zhu YQ, Du LQ, Ma BJ, Li L (2016) Experimental study on the effect of magnetic field on electrolytic machining process. Electromachining & Mould (03):24-26

  106. Xiao X, Li T, Fan X, Kim C, Influence of the orientation of the magnetic field on the MHD unaligned isothermal flows. Fusion Eng Des 173 :112806. 10.1016/j.fusengdes.2021.112806

  107. Zhang CL, Zhang H, Jiang DW (2020) Amplification mechanism of the velocity response of channel flow under the action of electromagnetic force. Acth Aerodyn Sin 38(3):490–499

    Google Scholar 

  108. Wan J, Zuo Y, Wang Z, Yan F, Ge L, Liang ZM (2014) MHD microfluidic drive of ionic liquids. J Microelectromech S 23(6):1463–1470. https://doi.org/10.1109/JMEMS.2014.2315638

    Article  Google Scholar 

  109. Mutschke G, Tschulik K, Weier T, Uhlemann M, Bund A, Fröhlich J (2010) On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta. 55(28):9060–9066. https://doi.org/10.1016/j.electacta.2010.08.046

    Article  Google Scholar 

  110. Mühlenhoff S, Mutschke G, Uhlemann M, Yang X, Odenbach S, Fröhlich J, Eckert K (2013) On the homogenization of the thickness of Cu deposits by means of MHD convection within small dimension cells. Electrochem Commun 36:80–83. https://doi.org/10.1016/j.elecom.2013.09.025

    Article  Google Scholar 

  111. Zhang X, Li X, Ming P, Zhang Y, Yan L, Qin G (2019) Micro-electroforming high aspect ratio microstructures under magnetic field. Microsyst Technol 25(04):1401–1411. https://doi.org/10.1007/s00542-018-4090-0

    Article  Google Scholar 

  112. Huang M, Marinaro G, Yang X, Fritzsche B, Lei Z, Uhlemann M, Eckert K, Mutschke G (2019) Mass transfer and electrolyte flow during electrodeposition on a conically shaped electrode under the influence of a magnetic field. J Electroanal Chem 842:203–213. https://doi.org/10.1016/j.jelechem.2019.04.043

    Article  Google Scholar 

  113. Liu Y, Zhang X, Xu Y, Liu Q (2022) Transport behaviors of biochar particles in saturated porous media under DC electric field. Sci total Environ 856:159084. https://doi.org/10.1016/j.scitotenv.2022.159084

    Article  Google Scholar 

  114. Chen SX, Fan D, Zhang SP (2015) Effect of magnetic field on electrochemical corrosion behavior. Mater Prot 48(09):31-35+7

    Google Scholar 

  115. Yao XY, Wu KF, Lu XW, Li XG, Niu YS, Guan FJ, Xi LL (2021) Effect of magnetic field synergy on copper electrolysis process. Chin Nonferrous Met 50(03):9–15

    Google Scholar 

  116. Zheng BM, Chen YG, Qian GY, Gong XZ, Wang Z (2021) Enhanced mechanism of high intensity circulating magnetic field on electrodeposition of low concentration copper ion solution. Ming&Metall 30(03):109-115+122.

  117. Ye P, Huang H, Shao S, Wang G, Wang J, Liu X, Su B, He J, Zhang C (2022) Effect of external magnetic field on terahertz transmission characteristics of electrolyte solution based on microfluidic technology. Results in Optics 6:100211. https://doi.org/10.1016/j.rio.2022.100211

    Article  Google Scholar 

  118. Bin G, Han HB, Feng C (2011) Influence of magnetic field on microstructural and dynamic properties of sodium, magnesium and calcium ions. T nonferr Metal Soc 21:s494–s498. https://doi.org/10.1016/S1003-6326(11)61631-2

    Article  Google Scholar 

  119. Qiang ZM, Ma BJ, Wang RF, Li L (2019) Molecular dynamics study of the effect of magnetic field on the microscopic diffusion properties of electrolyte in electrochemical reactions. J Mol Sci 35(01):70–76

    Google Scholar 

  120. Szcześ A, Chibowski E, Hołysz L, Rafalski P (2011) Effects of static magnetic field on water at kinetic condition. Chem Eng Process 50(1):124–127. https://doi.org/10.1016/j.cep.2010.12.005

    Article  Google Scholar 

  121. Chang KT, Weng CI (2006) The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J appl Phys 100(4):043917. https://doi.org/10.1063/1.2335971

    Article  Google Scholar 

  122. Chang KT, Weng CI (2008) An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields. Comp mater Sci 43(4):1048–1055. https://doi.org/10.1016/j.commatsci.2008.02.020

    Article  Google Scholar 

  123. Li D (2008) Principles of electrochemistry. 3rd edition, Principles of Electrochemistry. 3rd edition.

  124. Liu Y, Zheng B, Zhang T, Chen Y, Liu J, Wang Z, Gong X (2022) Magnetic field intensified electrodeposition of low-concentration copper ions in aqueous solution. Electrochim Acta 432:141201. https://doi.org/10.1016/j.electacta.2022.141201

    Article  Google Scholar 

  125. Morimoto R, Miura M, Sugiyama A, Miura M, Oshikiri Y, Mogi I, Takagi S, Yamauchi Y, Aogaki R (2019) Theory of microscopic electrodeposition under a uniform parallel magnetic field-2. Suppression of 3D nucleation by micro-MHD flow. J electroanal Chem 847:113255. https://doi.org/10.1016/j.jelechem.2019.113255

    Article  Google Scholar 

  126. Aogaki R, Morimoto R, Asanuma M (2010) Nonequilibrium fluctuations in micro-MHD effects on electrodeposition. J Magn Magn Mater 322 (9)1664-1668. https://doi.org/10.1016/j.jmmm.2009.02.144

  127. Wang C, Zhong Y, Ren W, Lei Z, Ren Z, Jia J, Jiang A (2008) Effects of parallel magnetic field on electrocodeposition behavior of Ni/nanoparticle composite electroplating. Appl Surf Sci 254(18):5649–5654. https://doi.org/10.1016/j.apsusc.2008.03.072

    Article  Google Scholar 

  128. Shen K, Wang Z, Bi X, Ying Y, Zhang D, Jin C, Hou G, Cao H, Wu L, Zheng GJ (2019) Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater 9(20):1900260. https://doi.org/10.1002/aenm.201900260

    Article  Google Scholar 

  129. Mohan S, Saravanan G, Bund A (2012) Role of magnetic forces in pulse electrochemical deposition of NinanoAl2O3 composites. Electrochim Acta 64(2012):94–99. https://doi.org/10.1016/j.electacta.2011.12.123

    Article  Google Scholar 

  130. Yin D, Murdoch HA, Hornbuckle BC, Hernández-Rivera E, Dunstan M (2019) Investigation of anomalous copper hydride phase during magnetic field assisted electrodeposition of copper. Electrochem Commun 98:96–100. https://doi.org/10.1016/j.elecom.2018.11.018

    Article  Google Scholar 

  131. Xu M, Shen L, Jiang W, Qiu M, Tian Z (2019) Study on the properties of superhydrophobic nickel coating prepared by jet electrodeposition in a parallel magnetic field. Mater Res Express 6(8):086462. https://doi.org/10.1088/2053-1591/ab2722

    Article  Google Scholar 

  132. Long Q, Zhong YB, Wang H, Zheng TX, Zhou JF, Ren ZM (2014) Effects of magnetic fields on Fe-Si composite electrodeposition. Int j Min Met Mater 21(12):1175–1186. https://doi.org/10.1007/s12613-014-1025-3

    Article  Google Scholar 

  133. Matsushima H, Takahashi H, Suzuki T, Ueda M, Mogi I (2020) Effect of a high magnetic field on aluminum electrodeposition using an ionic liquid. Electrochem Commun 115:106733. https://doi.org/10.1016/j.elecom.2020.106733

    Article  Google Scholar 

  134. Long Q, Zhong Y, Wu Y, Li Y, Li J (2019) Behavior of electrodeposited Fe/FeSi composite in a static parallel magnetic field. Int J Electrochem Sci 14:10002-10014. 10.20964/2019.10.38

  135. Tschulik K, Koza JA, Uhlemann M, Gebert A, Schultz L (2009) Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth. Electrochem Commun 11(11):2241–2244. https://doi.org/10.1016/j.elecom.2009.09.041

    Article  Google Scholar 

  136. Yao XY, Zhao YY, Lu XW, Wang JH, Niu YS, Cheng L, Li YL (2020) Effect of magnetic field gradient force on copper electrolysis process under the action of strong magnetic field. Chin J Nonferrous Met 30(11):2695–2705

    Google Scholar 

  137. Murdoch HA, Yin D, Hernández-Rivera E, Giri A (2018) Effect of applied magnetic field on microstructure of electrodeposited copper. Electrochem commun. 97:11–15. https://doi.org/10.1016/j.elecom.2018.09.013

    Article  Google Scholar 

  138. Carmen Aguirre M, Urreta SE (2021) Effect of an external magnetic field orthogonal to the electrode surface on the electrocrystallization mechanism of Co-Fe films under pulsed applied potential. J alloy Compd 878:160347. https://doi.org/10.1016/j.jallcom.2021.160347

    Article  Google Scholar 

  139. Zhou P, Zhong Y, Wang H, Long Q, Li F, Sun Z, Dong L, Fan LJ (2013) Effects of parallel magnetic field on electrocodeposition behavior of Fe/nano-Si particles composite electroplating. Appl Surf Sci 282:624–631. https://doi.org/10.1016/j.apsusc.2013.06.022

    Article  Google Scholar 

  140. Kang P, Liu JQ, Wu FJ, Zhou H (2021) Multi-field coupled simulation and experimental analysis of electric fusion explosion plasma arc. Mod Manu Eng 06:69–74

    Google Scholar 

  141. Mhíocháin TN, Coey JMD (2004) Chirality of electrodeposits grown in a magnetic field. Phys Rev E 69(6):061404. https://doi.org/10.1103/PhysRevE.69.061404

    Article  Google Scholar 

  142. Hinds G, Spada F, Coey J, Mhíocháin T, Lyons M (2001) Magnetic field effects on copper electrolysis. J Phys Chem B 105(39):9487–9502. https://doi.org/10.1021/jp010581u

    Article  Google Scholar 

  143. Kumar A, Mondal P, Fontanesi C (2018) Chiral magneto-electrochemistry. Magnetochemistry 4(3):36. https://doi.org/10.3390/magnetochemistry4030036

    Article  Google Scholar 

  144. Yang M (2011) Principles and applications of electrochemical processing technology. Machinery 38(S1):81–83

    Google Scholar 

  145. Zhuang Y, Zhou ZM, Fan D (2022) A review of research on metal coating methods for optical fibers. Las & Opto Pro 59(05):27–36

    Google Scholar 

  146. Wang SL, Wu YF, Hu BY, Miao L, Xia T, Dai L (2016) Recent research progress of pulse plating. Electroplat & finishing 35(16):873–877

    Google Scholar 

  147. Liu F, Li WB (2011) Three-dimensional simulation of the magnetic field of permanent magnets and its effect on particles. Mech Eng & Auto 03:38–40

    MathSciNet  Google Scholar 

  148. Kermoune H, Levesque A, Douglad J, Rehamnia R, Chopart J (2017) Magnetic field effect on Zn-Co alloy electroplating. Ionics 23(12):3565–3570. https://doi.org/10.1007/s11581-017-2156-0

    Article  Google Scholar 

  149. Yu Y, Li W, Lou J, Ge H, Sun L, Jiang L, Wei GJ (2012) Effect of magnetic fields on pulse plating of cobalt films. Rare metals. 31(2):125–129. https://doi.org/10.1007/s12598-012-0476-9

    Article  Google Scholar 

  150. Shiomi S, Shamsuri SR, Matsubara E (2020) Magnetic field strength controlled liquid phase syntheses of ferromagnetic metal nanowire. Nanotechnology 31(36):365602. https://doi.org/10.1088/1361-6528/ab93ef

    Article  Google Scholar 

  151. Benachour N, Chouchane S, Chopart JP (2022) The electroplating process of zinc–nickel system under perpendicular magnetic field from chloride bath. Mater Sci Tech-Lond 38(14):1046–1055. https://doi.org/10.1080/02670836.2022.2069655

    Article  Google Scholar 

  152. Tandon P, Mishra AC (2022) The effect of magnetic field orientation on the magnetoimpedance of electroplated NiFeCo/Cu wire. J Mater Sci-mater Ei 33(23):18311–18326. https://doi.org/10.1007/s10854-022-08686-9

    Article  Google Scholar 

  153. Yang LL, Chen C, Yuan J, Gao LY, Shang Z, Liu ZQ (2020) Effect of applied magnetic field on the electroplating and magnetic properties of amorphous FeNiPGd thin film. J Magn Magn Mater 495:165872. https://doi.org/10.1016/j.jmmm.2019.165872

    Article  Google Scholar 

  154. Jiang W, Huang M, Lao Y, Yang X, Wang C, Tian Z, Zhou S, Mutschke G (2021) Experimental and numerical investigations of Ni–Co–SiO2 alloy films deposited by magnetic-field-assisted jet plating. Surf Coat Tech 423:127583. https://doi.org/10.1016/j.surfcoat.2021.127583

    Article  Google Scholar 

  155. Park BN, Sohn YS, Choi SY (2008) Effects of a magnetic field on the copper metallization using the electroplating process. Microelectron Eng 85(2):308–314. https://doi.org/10.1016/j.mee.2007.06.018

    Article  Google Scholar 

  156. Ooi N, Aoki H, Watanabe D, Jeong JH, Kimura C, Sugino T (2009) Cu electroplating process with magnetic field for flexible device. Jpn J appl Phys 48(4R):046504. https://doi.org/10.1143/JJAP.48.046504

    Article  Google Scholar 

  157. Miao B, Jia WP, Wu MH, Yang F (2012) Analysis of the weaving and surface morphology of electrodeposited nickel layers under the action of magnetic field. Surface Technology 41(05):30–33

    Google Scholar 

  158. Long Q, Lu FH, Luo X, Huang F (2018) Current status of research on electrodeposition technology under the action of magnetic field. Hydromet Chin 37(03):179–185

    Google Scholar 

  159. Liu NN, Wu MH, Li Z, Wang YG (2013) Research progress of electrodeposition plating technology under the action of magnetic field. Rare Metal Mat Eng 42(03):649–654

    Google Scholar 

  160. Gang L, Yu Y, Ge H, Wei G, Jiang L, Sun L (2018) Study on properties of CoNi films with Mn doping prepared by magnetic fields induced codeposition technology. Surf Rev Lett 25(01):1850037. https://doi.org/10.1142/s0218625x18500373

    Article  Google Scholar 

  161. Ji R, Han K, Jin H, Li X, Liu Y, Liu S, Dong T, Cai B, Cheng WJ (2020) Preparation of Ni-SiC nano-composite coating by rotating magnetic field assisted electrodeposition. J manuf Process 57:787–797. https://doi.org/10.1016/j.jmapro.2020.07.045

    Article  Google Scholar 

  162. Zhang Y, Wei L, Zhang H, Wang J, Ma C, Xu FJ (2022) Study on magnetic-field-assisted electrodeposited Ni-SiC nanocomposites. J mater Eng Perform 31(1):602–612. https://doi.org/10.1007/s11665-021-06213-1

    Article  Google Scholar 

  163. Xia F, Li Q, Ma C, Guo XJ (2020) Preparation and characterization of Ni–AlN nanocoatings deposited by magnetic field assisted electrodeposition technique. Ceram Int 46(2):2500–2509. https://doi.org/10.1016/j.ceramint.2019.09.244

    Article  Google Scholar 

  164. Xu J, Chen Y, Shen L, Zhao J, Lou G, Huang D, Yang YJ, Physicochemical SA, Aspects E (2022) Fabrication of superhydrophobic stainless-steel mesh for oil-water separation by jet electrodeposition. Colloid Surface A 649:129434. https://doi.org/10.1016/j.colsurfa.2022.129434

    Article  Google Scholar 

  165. Gao Y, Li G, Wu C, Sui X, Du J, Wang Q (2017) Effects of high magnetic field assisted annealing on structure and optical, electric properties of electrodeposited ZnO films. Superlattice Microst 101(2017):341–348. https://doi.org/10.1016/j.spmi.2016.11.066

    Article  Google Scholar 

  166. Aji D, Pakawatpanurut P (2022) Ambient processing of methylammonium lead iodide perovskite solar cells via magnetic field assisted electrodeposition of the precursor film. Sol Energy 233:204–212. https://doi.org/10.1016/j.solener.2022.01.044

    Article  Google Scholar 

  167. Zhang J, Chen X, Gao T, Wu Y, Yang Y, Guo Y, Xiao D (2021) A trimetallic cobalt/iron/nickel phytate catalyst for overall water splitting: fabrication by magnetic-field-assisted bipolar electrodeposition. Chempluschem 86(1):184–190. https://doi.org/10.1002/cplu.202000729

    Article  Google Scholar 

  168. Li Z, Lv Z, Liu X, Wang G, Lin Y, Xie G, Jiang L (2021) Magnetic-field guided synthesis of highly active Ni–S–CoFe2O4 electrocatalysts for oxygen evolution reaction. Renew Energy 165:612–618. https://doi.org/10.1016/j.renene.2020.11.083

    Article  Google Scholar 

  169. Fattahi A, Bahrololoom ME (2015) Investigating the effect of magnetic field on pulse electrodeposition of magnetic and non-magnetic nanostructured metals. Surf Coat Tech 261:426–435. https://doi.org/10.1016/j.surfcoat.2014.10.013

    Article  Google Scholar 

  170. Li Y (2009) Study on the application technology of microfabrication. Electromachining & Mould S1:32–37

    Google Scholar 

  171. Wang HB, Guo ZN, Luo HP (2011) Research status and prospect of microfabrication technology. Mod Mac Tool Aut Manu Tech (04):108-112.

  172. Fang JC, Jin ZJ, Xu WJ, Shi YY (2002) Magnetic electrochemical finishing machining. J Mater Process Technol 129(1-3):283–287. https://doi.org/10.1016/s0924-0136(02)00666-0

    Article  Google Scholar 

  173. Kang Y, Zhang CF, Liang RY, Zheng PX (2017) Experimental study on the effect of magnetic field on micro-hole of micro-fine electrolytic machining//. Proceedings of the 17th national academic conference on special processing 1630-633

  174. Jia JL, Fan ZJ (2011) Research on higher frequency, short pulses and assisted magnetic field electrochemical machining. Adv Mater Res Trans Tech Publ 189:3162–3165. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3162

    Article  Google Scholar 

  175. Tang L, Gan WM (2014) Experiment and simulation study on concentrated magnetic field assisted ECM S-03 special stainless steel complex cavity. Int J Adv Manuf Tech 72(5):685–692. https://doi.org/10.1007/s00170-014-5701-2

    Article  MathSciNet  Google Scholar 

  176. Vinod Kumaar JR, Thanigaivelan R (2020) Performance of magnetic field-assisted citric acid electrolyte on electrochemical micro-machining of SS 316L. Mater Manuf Process 35(9):969–977. https://doi.org/10.1080/10426914.2020.1750630

    Article  Google Scholar 

  177. Zhai K, Tang L, Liu J, Zhang X, Yan Y, Feng X (2021) Study on improving the surface roughness of multi-stage internal cone hole by rotating magnetic field assisted electrochemical machining. Int J Adv Manuf Tech 115(4):1227–1236. https://doi.org/10.1007/s00170-021-06930-w

    Article  Google Scholar 

  178. Chen X, Liu L, He J (2018) Fabrication of a metal micro mold by using pulse micro electroforming. Micromachines 9(5):203. https://doi.org/10.3390/mi9050203

    Article  Google Scholar 

  179. Li W, Ming PM, Jiang WJ, Lv YD (2011) Numerical simulation of high-aspect-ratio micro-hole electroforming with external magnetic field. Appl Mech Mater 42:13–16. https://doi.org/10.4028/www.scientific.net/AMM.42.13

    Article  Google Scholar 

  180. Iftikhar B, Siddiqui MA, Javed T (2022) Dynamics of MHD and ferrohydrodynamic natural convection flow of ferrofluid inside an enclosure under non-uniform magnetic field. Alex Eng J 11:011. https://doi.org/10.1016/j.aej.2022.11.011

    Article  Google Scholar 

  181. Jia WP, Wu MH, Yang F (2014) Effect of composite electrodeposition process parameters on the surface properties of nickel crystal micro castings. Surface Technology 43(05):55–60

    Google Scholar 

  182. Weinmann M, Jung A, Natter H (2013) Magnetic field assisted electroforming of complex geometries. J solid State Electr 17(10):2721–2729. https://doi.org/10.1007/s10008-013-2172-6

    Article  Google Scholar 

  183. Chan KC, Wong KP, Qu NS (2002) The effect of a magnetic field on the surface finish of nickel electroforms. Transactions of the IMF 80(3):110–112. https://doi.org/10.1080/00202967.2002.11871445

    Article  Google Scholar 

  184. Tian ZJ, Wang GF, Huang YH, Liu ZD, Shen LD, Gao XS (2010) Rapid forming of nickel metal parts by jet electrodeposition. J South China Univ Techno: Nat Sci Ed 38(12):41-44+55

  185. Zhou L, Hu SL (2022) Current status and recent progress of research on the preparation of corrosion-resistant coatings by electrodeposition. Guizhou Agri Mech 01:33–36

    Google Scholar 

  186. Yang F, Jia WP, Wu MH (2012) Effect of microelectroforming process parameters on the surface morphology of cast layers under the action of magnetic field. Mater Prot 45(09):48-51+8

    Google Scholar 

  187. Xu LY, Zhang YB, Chen JM, Long F, Yang ZJ (2016) A brief analysis and experimental study of microfine electrodeposition processing technology. Electromachining & Mould. S1:47–51

    Google Scholar 

  188. Labchir N, Hannour A, Vincent D, Ihlal A, Sajieddine M (2019) Magnetic field effect on electrodeposition of CoFe2O4 nanowires. Appl Phys A 125:1–9. https://doi.org/10.1007/s00339-019-3059-x

    Article  Google Scholar 

  189. Luo HP, Zhang QP, Liu GX, Zhang YJ (2021) Research status and development trend of electrolytic machining power supply. Chin J Mech Eng 57(13):201–213

    Google Scholar 

  190. Shen JW, Ming PM, Zhang XM, Niu DM, Xia YK, Zhang YY, Wang W, Li DD (2022) Transfer-mask electrolytic machining of macro-metal microstructures. Chin J Mech Eng 58(11):295–307

    Google Scholar 

  191. Ma XQ, Guo XF, Wang FZ, Li H, Li QY, Liu MH, Chen XW, Yu J, Cui YZ, Zhang J (2022) Electric field assisted improving the quality and magnetic properties of electrodeposited FeCo films. J supercond Nov magn 35(2):345–350. https://doi.org/10.1007/s10948-021-06139-8

    Article  Google Scholar 

  192. Li L, Ma BJ, Cheng P, Yun K, Yin P (2019) Effect of magnetic field on the electrochemical machining localization. Int J Adv Manuf tech 102(1):949–956. https://doi.org/10.1007/s00170-018-3185-1

    Article  Google Scholar 

  193. Zhang C, Zheng P, Liang R, Yun K, Jiang X, Yan Z (2020) Effects of a magnetic field on the machining accuracy for the electrochemical drilling of micro holes. Int J Electrochem Sci 15: 1148-1159. 10.20964/2020.02.10

  194. Vinod Kumaar JR, Thanigaivelan R (2020) Performance of magnetic field assisted citric acid electrolyte on electrochemical micro-machining of SS 316L. Mater Manuf Process 35:969–977. https://doi.org/10.1080/10426914.2020.1750630

    Article  Google Scholar 

  195. Tang H, Qiu P, Cao R, Zhuang J, Xu S (2019) Repulsive magnetic field–assisted laser-induced plasma micromachining for high-quality microfabrication. Int J Adv Manuf Tech 102(5-8):2223–2229. https://doi.org/10.1007/s00170-019-03370-5

    Article  Google Scholar 

  196. Adayi X, Kulan K, Baytimin A, Zhou JJ (2011) Progress of electrochemical finishing and its application. Mach Tool & Hydr 39(24):99–104

    Google Scholar 

  197. Fang JC, Kim SJ, Wang XY, Xu WJ, Zhou JJ, Jiang SC (1966) Research on magnetic field electrochemical photofinishing. J Dalian Univ Technol 06:761–765

    Google Scholar 

  198. Bian CX, Adai S, Liu JJ (2021) Simulation analysis and experimental study of vertical magnetic field assisted electrochemical photofinishing processing. Electroplat & Finishing. 40(17):1369–1378

    Google Scholar 

  199. Li L, Adai S, Cai JC (2021) Effect of magnetic field on the efficiency and microscopic morphology of electrochemical photomechanical processing. Hot Work Techno 50(24):95–99

    Google Scholar 

  200. Zhou R, Li FP, Hong MH (2017) Laser-matter interactions and their precision engineering applications. Sci Sinica 47(02):25–34

    Google Scholar 

  201. Zhang Z, Dai X, Xu K, Zhang L, Wu Y, Guo S (2021) Simulation research on the laser electrochemical compound deposition process based on electric coupling with temperature and flow field. Trans Inst Met Finish 100(1):10–17. https://doi.org/10.1080/00202967.2021.1986938

    Article  Google Scholar 

  202. Ismail RA, Shaker SS, Mousa AM (2021) Study the optoelectronic properties of PbI2 nanorods/Si photodetector prepared by magnetic field assisted laser deposition route. Opt Laser Technol 140:107042. https://doi.org/10.1016/j.optlastec.2021.107042

    Article  Google Scholar 

  203. Wang AB (2020) Preparation of iron-nickel alloy by laser and magnetic field assisted electrodeposition and its properties. Jiangsu University

  204. Wu YC, Zhang Z, Xu K, Lu J, Dai X, Zhu H, Yang S (2021) Effect of laser single pulse energy on micro-structural, mechanical and corrosion properties of amorphous Ni-Fe-P alloy prepared by laser-assisted electrodeposition. Surf interfaces 22:100811. https://doi.org/10.1016/j.surfin.2020.100811

    Article  Google Scholar 

  205. Miao B, Jia WP, Wu MH (2013) Effect of electrodeposition process parameters on the performance of nickel plating layer under the action of different magnetic field directions. Mach Des Manu 07:144–146

    Google Scholar 

  206. Zhou HZ, Gu MF, Fang XX, Bai YQ, Zhang XL (2015) Electromagnetic-ultrasonic composite field preparation technology for nano-SiC/Ni-P composite plating, Proceedings of the 11th National Heat Treatment Conference 856-860

  207. Wu YC, Xu K, Zhang ZY, Dai XR, Zhao DY, Hao Z, Wang AB (2021) Effect of magnetic field on abnormal co-deposition and performance of Fe-Ni alloy based on laser irradiation. J Electroanal Chem 905:115967. https://doi.org/10.1016/j.jelechem.2021.115967

    Article  Google Scholar 

  208. Zhang ZY, Wu YC, Kun X, Dai XR, Zhao DY, Hao Z, Yang L (2021) A study on steady-state magnetic field in the surface morphology and internal stress of electrodeposited amorphous Ni-Fe-P alloy based on laser irradiation. Surf Coat Tech 425:127677. https://doi.org/10.1016/j.surfcoat.2021.127677

    Article  Google Scholar 

  209. Zhang CG, Zhang Y, Zhang FH (2018) Research on magnetic field assisted synergistic ultrasonic pulse electrochemical composite photofinishing processing. Tool Engineering 52(11):115–117

    Google Scholar 

  210. Siddiqui H, Singh N, Chauhan V (2021) Electrochemical 3D printed copper garden for nitrate detection. Mater lett 305:130795. https://doi.org/10.1016/j.matlet.2021.130795

    Article  Google Scholar 

  211. Sundaram MM, Kamaraj AB, Kumar VS (2015) Mask-less electrochemical additive manufacturing: a feasibility study. J Manuf Sci Engin 137(2):021006. https://doi.org/10.1115/1.4029022

    Article  Google Scholar 

  212. Shen LD, Tian ZJ, Xie DQ (2018) Current status of metal ion liquid beam flow additive manufacturing research and its developmen. Aeronaut Manu Techno 61(17):30-37

    Google Scholar 

  213. Braun TM, Schwartz DT (2016) The emerging role of electrodeposition in additive manufacturing. Electro Soc Inter 25(1):69–73. https://doi.org/10.1149/2.f07161if

    Article  Google Scholar 

  214. Li XC, Ming PM, Ao SS, Wang W (2021) Review of additive electrochemical micro-manufacturing technology. Int J Mach Tool Manu 103848. https://doi.org/10.1016/j.ijmachtools.2021.103848

  215. Li Q, Lei C, Liang T, Li YW, Zhou XJ (2022) Study of thick nickel plating process on silicon carbide surface. Plat. Finish. 44(02):51–55

    Google Scholar 

  216. Wang Y, Yi F, Zhang T, Liu J, Wang B, Zhou Y (2017) Design and property study of micro-slot optics. Opt commun 386. https://doi.org/10.1016/j.optcom.2016.11.020

  217. Qin G, Zhou K, Ming PM, Zhang XM, Liu KR (2018) Study of particle mask electrodeposited micro-pit arrays on curved metal surfaces. Surface Technology. 47(09):28–33

    Google Scholar 

  218. Malekabadi A, Paoloni C (2016) UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist. J micromech microeng 26:095010. https://doi.org/10.1088/0960-1317/26/9/095010

    Article  Google Scholar 

  219. Alper SE, Ocak IE, Akin T (2007) Ultrathick and high-aspect-ratio nickel microgyroscope using EFAB multilayer additive electroforming. J microelectromech S 16(5):1025–1035. https://doi.org/10.1109/JMEMS.2007.902431

    Article  Google Scholar 

  220. Cohen A, Chen R, Frodis U, Wu MT, Folk C (2010) Microscale metal additive manufacturing of multi-component medical devices. Rapid Prototyping J 16(3):209–215. https://doi.org/10.1108/13552541011034889

    Article  Google Scholar 

  221. Zhao GH, Xue YP, Wang YD, Yin YG, Chen QS, Li J (2022) Plating process and its application in MEMS technology. J Tele Track Com 43(01):29–40

    Google Scholar 

  222. Jain A, Cohen A (2015) Ultra-precision metal additive manufacturing for thermal management of microelectronics, a white paper. https://www.microfabrica.com/downloads/ultra-precision-metal-additive-manufacturing-for-thermal-management-of-microelectronics.pdf

  223. Guo Y, Liu P, Jiang P, Hua Y, Shi K, Zheng H, Yang Y (2021) A flow-rate-controlled double-nozzles approach for electrochemical additive manufacturing. Virtual phys prototy 17(1):52–68. https://doi.org/10.1080/17452759.2021.1989751

    Article  Google Scholar 

  224. Liu P, Guo Y, Wu Y, Chen J, Yang Y (2020) A low-cost electrochemical metal 3D printer based on a microfluidic system for printing mesoscale objects. Crystals 10(4):257. https://doi.org/10.3390/cryst10040257

    Article  Google Scholar 

  225. Zhang F, Yao Z, Moliar O, Zhang Z, Tao X (2020) Ultra-low-power preparation of multilayer nanocrystalline NiCo binary alloy coating by electrochemical additive manufacturing. Surf Coat Tech 403:126404. https://doi.org/10.1016/j.surfcoat.2020.126404

    Article  Google Scholar 

  226. Hu J, Yu MF (2010) Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329:313–316. https://doi.org/10.1126/science.1190496

    Article  Google Scholar 

  227. Yan D, Wang Y, Liu J, Zhao D, Ming P, Song J (2021) Electrochemical 3D printing of superhydrophobic pillars with conical, cylindrical, and inverted conical shapes. Colloid Surface A 625:126869. https://doi.org/10.1016/j.colsurfa.2021.126869

    Article  Google Scholar 

  228. Ye W, Wu W, Hu X, Lin G, Guo J, Qu H, Zhao J (2019) 3D printing of carbon nanotubes reinforced thermoplastic polyimide composites with controllable mechanical and electrical performance. Compos Sci technol 182:107671. https://doi.org/10.1016/j.compscitech.2019.05.028

    Article  Google Scholar 

  229. Manukyan N, Kamaraj A, Sundaram M (2019) Localized electrochemical deposition using ultra-high frequency pulsed power. Pro Manu 34:197–204. https://doi.org/10.1016/j.promfg.2019.06.139

    Article  Google Scholar 

  230. Wang FL, Bian HL, Xiao YF (2019) Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode. Ecs J solid State Sci Technol 8(4):P223. https://doi.org/10.1149/2.0111903jss

    Article  Google Scholar 

  231. El-Giar EM, Said RA, Bridges GE (2000) Thomson D J, Localized electrochemical deposition of copper microstructures. J electrochem Soc 147(2):586. https://doi.org/10.1149/1.1393237

    Article  Google Scholar 

  232. Li T, Yan X, Fang X, Jin P, Li J, Rabbi KF, Miljkovic N (2021) In situjet electrolyte micromachining and additive manufacturing. Appl phys lett 119(17):171602. https://doi.org/10.1063/5.0067988

    Article  Google Scholar 

  233. Momotenko D, Page A, Adobes-Vidal M, Unwin PR (2016) Write–read 3D patterning with a dual-channel nanopipette. ACS Nano. 10(9):8871–8878. https://doi.org/10.1021/acsnano.6b04761

    Article  Google Scholar 

  234. Hengsteler J, Mandal B, Nisselroy C, Lau G, Schlotter T, Zambelli T, Momotenko D (2021) Bringing electrochemical three-dimensional printing to the nanoscale. Nano Lett 21(21):9093–9101. https://doi.org/10.1021/acs.nanolett.1c02847

    Article  Google Scholar 

  235. Kim H, Kim JG, Park JW, Chu CN (2017) Selective copper metallization of nonconductive materials using jet-circulating electrodeposition. Pre Engin 51:153–159. https://doi.org/10.1016/j.precisioneng.2017.08.005

    Article  Google Scholar 

  236. Li X, Ming P, Zhang X, Wang W, Zhang Y, Qin G, Zheng X, Niu S (2020) Compressed air-film encircling jet electrodeposition with high deposition accuracy. J electrochem Soc 167(10):102502. https://doi.org/10.1149/1945-7111/ab971d

    Article  Google Scholar 

  237. Reiser A, Lindén M, Rohner P, Marchand A, Galinski H, Sologubenko AS, Wheeler JM, Zenobi R, Poulikakos D, Spolenak R (2019) Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun 10(1):1–8. https://doi.org/10.1038/s41467-019-09827-1

    Article  Google Scholar 

  238. Hirt L, Ihle S, Pan Z, Dorwling-Carter L, Reiser A, Wheeler JM, Spolenak R, Vörös J, Zambelli T (2016) 3D microprinting: template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition. Adv Mater 28(2016):04967. https://doi.org/10.1002/adma.201504967

    Article  Google Scholar 

  239. Ren W, Xu J, Lian Z, Sun X, Xu Z, Yu H (2021) Localized electrodeposition micro additive manufacturing of pure copper microstructures. Int J Extreme Manuf 4(1):015101. https://doi.org/10.1088/2631-7990/ac3963

    Article  Google Scholar 

  240. Kolb DM, Ullmann R, Will T (1997) Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope. Science 275:1097–1099. https://doi.org/10.1126/science.275.5303.1097

    Article  Google Scholar 

  241. Wang FF, Wang W, He X, Han L, Zhou JZ, Tian ZQ, Tian ZW, Zhan D (2017) Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution. Sci china Chem 60:649–655. https://doi.org/10.1007/s11426-017-9029-9

    Article  Google Scholar 

  242. Jia WP, Wu MH, Jia ZY, Wu JH, Zhou SA (2019) Research progress of maskless fixed-domain electrodeposition-additive manufacturing technology. Rare Met Mater Eng 48(02):693–700

    Google Scholar 

  243. Wang X, Niu ZW, Wang XM, Zhao Y, Korea F, Chang Q, Fu H, Teng T, Zhao FF (2021) Current status of research on external field (force)-assisted jet electrodeposition. Mater Rev 35(05):5107–5121

    Google Scholar 

  244. Fan YE, Yang L, Zhang J, Wu HC, Wang Y (2019) Preparation of carbon nanotube-enhanced Cu-Ni composite coatings and their properties. Surface Technol 48(12):114–124

    Google Scholar 

  245. Wu JH, Wu MH, Wang YG, Jia WP (2020) Process study of maskless fixed-domain electrodeposition of three-dimensional microstructures. Mater Sci Tech Lond 28(06):29–35

    Google Scholar 

  246. Chen X, Liu X, Childs P, Brandon N, Wu B (2017) A Low CosL us 2:1700148. https://doi.org/10.1002/admt.201700148

Download references

Funding

This study was financially supported by Open Research Fund Program of Shaanxi Key Laboratory of Non-Traditional Machining (Grant No. SXTZKFJJ202004) and the Youth Science and Technology Fund of Gansu Province (Grant No. 21JR1RM340).

Author information

Authors and Affiliations

Authors

Contributions

Liangliang Li: writing—review and editing. Zhichao Li: resources, drawing. Baoji Ma: supervision, formal analysis. Tianxu Gong: conceptualization, investigation. Jinkui Cao and Xiangyu Li: find literature. Jianxiao Bian: fund support.

Corresponding author

Correspondence to Baoji Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ma, B., Li, Z. et al. Advances in magnetic field-assisted ECM—from magnetoelectric effects to technology applications. Int J Adv Manuf Technol 127, 4035–4065 (2023). https://doi.org/10.1007/s00170-023-11738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11738-x

Keywords

Navigation