Skip to main content
Log in

Mechanism Analysis of Electrochemical Micro-machining Behavior Assisted by Magnetic Field with Local Magnetic Induction Lines Deformation

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Grade 404C stainless steel was prepared with high precision by electrochemical micro-machining with or without magnetic field assistance. The surface roughness distributions were detected and their micro-morphologies were analyzed by scanning electron microscopy. Compared with traditional electrochemical micro-machining, the processing efficiency and final surface quality were improved by introducing an external magnet with the north pole directly under the machining gap. However, when dual magnets with the alignment of opposite north–north poles were employed, the variation of surface roughness with processing time was almost consistent with the magnetic field-free case. The mechanism of the effect of magnetic field on electrochemical micro-machining was elaborated. The advantage of magnetic field assistance was the generation of magnetohydrodynamic convection, which facilitated mass transport and accelerated anodic dissolution. Due to the magnetic induction lines in the machining gap being heavily deformed by the repulsion between the magnetic poles, the magnetohydrodynamic force was impaired and the gradient magnetic force was enhanced, which weakened the mass transfer and inhibited the anodic dissolution. In the process of magnetic field assistance electrochemical micro-machining, the magnetohydrodynamic force and the gradient magnetic force will affect the processing effect and enough attention should be paid to the deformation of the magnetic induction lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Holstein, W.G. Krauss, J.G. Konys, S. Heuer, and T. Weber, Fusion Eng. Des. 109, 956 https://doi.org/10.1016/j.fusengdes.2016.01.045 (2016).

    Article  Google Scholar 

  2. R. Mahdavinejad, and M. Hatami, J. Mater. Process Tech. 202(1–3), 307 https://doi.org/10.1016/j.jmatprotec.2007.09.027 (2008).

    Article  Google Scholar 

  3. A.A. Gomez-Gallegos, F. Mill, and A.R. Mount, J. Manuf. Process 23, 83 https://doi.org/10.1016/j.jmapro.2016.05.010 (2016).

    Article  Google Scholar 

  4. J.R. Vinod Kumaar, and R. Thanigaivelan, Mater. Manuf. Process. 35(9), 969 https://doi.org/10.1080/10426914.2020.1750630 (2020).

    Article  Google Scholar 

  5. M.M. Lohrengel, K.P. Rataj, N. Schubert, M. Schneider, S. Höhn, A. Michaelis, M. Hackert-Oschätzchen, A. Martin, and A. Schubert, Powder Metall. 57(1), 21 https://doi.org/10.1179/1743290113Y.0000000062 (2014).

    Article  Google Scholar 

  6. R. Thanigaivelan, and R.M. Arunachalam, Mater. Manuf. Process 25(10), 1181 https://doi.org/10.1080/10426914.2010.508806 (2010).

    Article  Google Scholar 

  7. T. Sathish, J. Mater. Res. Technol. 8(5), 4354 https://doi.org/10.1016/j.jmrt.2019.07.046 (2019).

    Article  Google Scholar 

  8. C.Y. Zhang, Y.J. Zhang, X.L. Chen, W. Li, and G.X. Liu, Int. J. Adv. Manuf. Tech. 97(9–12), 3575 https://doi.org/10.1007/s00170-018-2142-3 (2018).

    Article  Google Scholar 

  9. Y. Liu, and N.S. Qu, Int. J. Mech. Sci. 169, 105333 https://doi.org/10.1016/j.ijmecsci.2019.105333 (2020).

    Article  Google Scholar 

  10. W. Chen, F. Han, and J. Wang, Int. J. Adv. Manuf. Tech. 96(1), 1367 https://doi.org/10.1007/s00170-018-1594-9 (2018).

    Article  Google Scholar 

  11. J. Li, D. Wang, D. Zhu, and B. He, J. Mater. Process Tech. 275, 116323 https://doi.org/10.1016/j.jmatprotec.2019.116323 (2020).

    Article  Google Scholar 

  12. M. Hajian, M.R. Razfar, and S. Movahed, Precis. Eng. 45, 322 https://doi.org/10.1016/j.precisioneng.2016.03.009 (2016).

    Article  Google Scholar 

  13. K.G. Zhai, L. Tang, J. Liu, X.Y. Zhang, Y.N. Yan, and X. Feng, Int. J. Adv. Manuf. Tech. 115(4), 1227 https://doi.org/10.1007/s00170-021-06930-w (2021).

    Article  Google Scholar 

  14. L. Tang, and W.M. Gan, Int. J. Adv. Manuf. Tech. 72(5–8), 685 https://doi.org/10.1007/s00170-014-5701-2 (2014).

    Article  Google Scholar 

  15. Z.J. Fan, T.C. Wang, and L. Zhong, J. Mater. Process. Tech. 149(1–3), 409 https://doi.org/10.1016/j.jmatprotec.2003.12.025 (2004).

    Article  Google Scholar 

  16. L. Li, J.M. Bao, P.Y. Cheng, K. Yun, and H.H. Gao, Int. J. Adv. Manuf. Tech. 101(5), 1635 https://doi.org/10.1007/s00170-018-3072-9 (2019).

    Article  Google Scholar 

  17. S. Ayyappan, K. Sivakumar, and M. Kalaimathi, P I Mech. Eng. C-J Mech. 231(10), 1956 https://doi.org/10.1177/0954406215623310 (2017).

    Article  Google Scholar 

  18. L. Li, and J.M. Bao, Int. J. Adv. Manuf. Tech. 94(1), 1177 https://doi.org/10.1007/s00170-017-0983-9 (2018).

    Article  Google Scholar 

  19. P.S. Pa, ECS Trans. 14(1), 629 https://doi.org/10.1149/1.2956081 (2008).

    Article  Google Scholar 

  20. C.F. Zhang, Int. J. Electrochem. Sci. 15(2), 1148 https://doi.org/10.20964/2020.02.10 (2020).

    Article  Google Scholar 

  21. Z.P. Lu, C.B. Huang, D. Huang, and Y. Wu, Corros. Sci. 48(10), 3049 https://doi.org/10.1016/j.corsci.2005.11.014 (2006).

    Article  Google Scholar 

  22. L. Li, J.M. Bao, P.Y. Cheng, K. Yun, and P.L. Yin, Int. J. Adv. Manuf. Tech. 102(1), 949 https://doi.org/10.1007/s00170-018-3185-1 (2019).

    Article  Google Scholar 

  23. P. Lazzeretti, J. Chem. Phys. 150(18), 184117 https://doi.org/10.1063/1.5097578 (2019).

    Article  Google Scholar 

  24. R. Shirsavar, M. Nasiri, A. Amjadi, A. Nejati, S.O. Sobhani, and M. Habibi, Rsc Adv. 6(113), 112641 https://doi.org/10.1039/c6ra24346k (2016).

    Article  Google Scholar 

  25. X.P. Wang, J.J. Zhao, Y.P. Hu, L. Li, and C. Wang, Electrochim. Acta 117, 113 https://doi.org/10.1016/j.electacta.2013.11.100 (2014).

    Article  Google Scholar 

  26. B.Y. Yuan, C. Wang, L. Li, and S.H. Chen, Corros. Sci. 58, 69 https://doi.org/10.1016/j.corsci.2012.01.005 (2012).

    Article  Google Scholar 

  27. D. Barker, and F.C. Walsh, T I Met. Finish 69(4), 158 https://doi.org/10.1080/00202967.1991.11870915 (1991).

    Article  Google Scholar 

  28. C. Winkelmann, and W. Lang, Int. J. Mach. Tool Manuf. 72, 25 https://doi.org/10.1016/j.ijmachtools.2013.05.004 (2013).

    Article  Google Scholar 

  29. L. Li, M.A. Baoji, R.F. Wang, and L.Q. Du, Int. J. Adv. Manuf. Technol. 91, 2995 https://doi.org/10.1007/s00170-017-9983-z (2017).

    Article  Google Scholar 

  30. S.R. Ragsdale, K.M. Grant, and H.S. White, J. Am. Chem. Soc. 120(51), 13461 https://doi.org/10.1021/ja982540q (1998).

    Article  Google Scholar 

  31. R.A. Tacken, and L.J.J. Janssen, J. Appl. Electrochem. 25(1), 1 https://doi.org/10.1007/bf002512 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by [National Natural Science Foundation of China] (Grant Numbers [No. 51975081], [No. 51872034] and [51722205]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manfu Wang or Zhihua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, G., Cao, X., Zhang, J. et al. Mechanism Analysis of Electrochemical Micro-machining Behavior Assisted by Magnetic Field with Local Magnetic Induction Lines Deformation. JOM 75, 3249–3256 (2023). https://doi.org/10.1007/s11837-023-05798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05798-3

Navigation