Skip to main content
Log in

Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Scanning probe is the key issue for the electrochemical scanning probe techniques (EC-SPM) such as EC-scanning tunnel microscopy (STM), EC-atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM), especially the insulative encapsulation of the nanoelectrode probe for both positioning and electrochemical feedbacks. To solve this problem, we develop a novel fabrication method of the gold nanoelectrodes: firstly, a micropipette with nanomter-sized orifice was prepared as the template by a laser puller; secondly, the inside wall of micropipette apex was blocked by compact and conic Au nano-piece through electroless plating; thirdly, the Au nano-piece was grown by bipolar electroplating and connected with a silver wire as a current collector. The fabricated Au nanoelectrode has very good voltammetric responses for the electrodic processes of both mass transfer and adsorption. The advantage lies in that it is well encapsulated by a thin glass sealing layer with a RG value lowered to 1.3, which makes it qualified in the SECM-STM coupling mode. On one hand, it can serve as STM tip for positioning which ensures the high spatial resolution; on the other hand, it is a high-quality nanoelectrode to explore the local chemical activity of the substrate. The nanofabrication method may promote the SPM techniques to obtain simultaneously the physical and chemical images with nanoscale spatial resolution, which opens a new approach to tip chemistry in electrochemical nanocatalysis and tip-enhanced spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim YG, Soriaga MP. J Electroanal Chem, 2014, 734: 7–9

    Article  CAS  Google Scholar 

  2. Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, Moore AL, Moore TA. J Am Chem Soc, 2012, 134: 1577–1582

    Article  CAS  Google Scholar 

  3. Petrangolini P, Alessandrini A, Berti L, Facci P. J Am Chem Soc, 2010, 132: 7445–7453

    Article  CAS  Google Scholar 

  4. Derylo MA, Morton KC, Baker LA. Langmuir, 2011, 27: 13925–13930

    Article  CAS  Google Scholar 

  5. Lee E, Kim M, Seong J, Shin H, Lim G. Phys Status Solidi RRL, 2013, 7: 406–409

    Article  CAS  Google Scholar 

  6. Leonhardt K, Avdic A, Lugstein A, Pobelov I, Wandlowski T, Wu M, Gollas B, Denuault G. Anal Chem, 2011, 83: 2971–2977

    Article  CAS  Google Scholar 

  7. Wain AJ, Pollard AJ, Richter C. Anal Chem, 2014, 86: 5143–5149

    Article  CAS  Google Scholar 

  8. Li Y, Bergman D, Zhang B. Anal Chem, 2009, 81: 5496–5502

    Article  CAS  Google Scholar 

  9. Sun P, Mirkin MV. Anal Chem, 2006, 78: 6526–6534

    Article  CAS  Google Scholar 

  10. Zhan D, Velmurugan J, Mirkin MV. J Am Chem Soc, 2009, 131: 14756–14760

    Article  CAS  Google Scholar 

  11. Liu Y, Yao Q, Zhang X, Li M, Zhu A, Shi G. Biosens Bioelectron, 2015, 63: 262–268

    Article  CAS  Google Scholar 

  12. Wang Z, Zhang J, Yin Z, Wu S, Mandler D, Zhang H. Nanoscale, 2012, 4: 2728–2733

    Article  CAS  Google Scholar 

  13. Li Y, Cox JT, Zhang B. J Am Chem Soc, 2010, 132: 3047–3054

    Article  CAS  Google Scholar 

  14. Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E. J Am Chem Soc, 2010, 132: 5622–5624

    Article  Google Scholar 

  15. Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Nat Nanotech, 2012, 7: 668–672

    Article  CAS  Google Scholar 

  16. Sun T, Yu Y, Zacher BJ, Mirkin MV. Angew Chem Int Ed, 2014, 53: 14120–14123

    Article  CAS  Google Scholar 

  17. Madiyar FR, Bhana S, Swisher LZ, Culbertson CT, Huang X, Li J. Nanoscale, 2015, 7: 3726–3736

    Article  CAS  Google Scholar 

  18. Sun G, Huang Y, Zheng L, Zhan Z, Zhang Y, Pang JHL, Wu T, Chen P. Nanoscale, 2011, 3: 4854–4858

    Article  CAS  Google Scholar 

  19. Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong JP, Ahn JP, Kwak J, Jeon D, Kotov NA, Kim B. ACS Nano, 2014, 8: 8182–8189

    Article  CAS  Google Scholar 

  20. Pust SE, Salomo M, Oesterschulze E, Wittstock G. Nanotechnology, 2010, 21: 105709

    Article  Google Scholar 

  21. Salomo M, Pust SE, Wittstock G, Oesterschulze E. Microelec Eng, 2010, 87: 1537–1539

    Article  CAS  Google Scholar 

  22. Szunerits S, Pust SE, Wittstock G. Anal Bioanal Chem, 2007, 389: 1103–1120

    Article  CAS  Google Scholar 

  23. Tefashe UM, Wittstock G. Comptes Rendus Chimie, 2013, 16: 7–14

    Article  CAS  Google Scholar 

  24. Knittel P, Higgins MJ, Kranz C. Nanoscale, 2014, 6: 2255–2260

    Article  CAS  Google Scholar 

  25. Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E. Anal Chem, 2001, 73: 2491–2500

    Article  CAS  Google Scholar 

  26. Kueng A, Kranz C, Mizaikoff B, Lugstein A, Bertagnolli E. Appl Phys Lett, 2003, 82: 1592–1594

    Article  CAS  Google Scholar 

  27. Lugstein A, Bertagnolli E, Kranz C, Mizaikoff B. Surf Interface Anal, 2002, 33: 146–150

    Article  CAS  Google Scholar 

  28. Moon JS, Wiedemair J, Masson JF, Mizaikoff B, Kranz C. Microsc Microanal, 2007, 13: 58–59

    Article  Google Scholar 

  29. Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B. Angew Chem Int Ed, 2003, 42: 3238–3240

    Article  CAS  Google Scholar 

  30. Macpherson JV, Jones CE, Barker AL, Unwin PR. Anal Chem, 2002, 74: 1841–1848

    Article  Google Scholar 

  31. Takahashi Y, Shiku H, Murata T, Yasukawa T, Matsue T. Anal Chem, 2009, 81: 9674–9681

    Article  CAS  Google Scholar 

  32. Walsh DA, Fernández JL, Mauzeroll J, Bard AJ. Anal Chem, 2005, 77: 5182–5188

    Article  CAS  Google Scholar 

  33. Wain AJ, Cox D, Zhou S, Turnbull A. Electrochem Commun, 2011, 13: 78–81

    Article  CAS  Google Scholar 

  34. Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T. J Am Chem Soc, 2010, 132: 10118–10126

    Article  CAS  Google Scholar 

  35. Li F, Hunt B, Sun P. Electroanalysis, 2013, 25: 787–792

    Article  CAS  Google Scholar 

  36. Velmurugan J, Sun P, Mirkin MV. J Phys Chem C, 2009, 113: 459–464

    Article  CAS  Google Scholar 

  37. Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE. Angew Chem Int Ed, 2011, 50: 9638–9642

    Article  CAS  Google Scholar 

  38. McKelvey K, Nadappuram BP, Actis P, Takahashi Y, Korchev YE, Matsue T, Robinson C, Unwin PR. Anal Chem, 2013, 85: 7519–7526

    Article  CAS  Google Scholar 

  39. Ueda A, Niwa O, Maruyama K, Shindo Y, Oka K, Suzuki K. Angew Chem Int Ed, 2007, 46: 8238–8241

    Article  CAS  Google Scholar 

  40. Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE. Langmuir, 2006, 22: 10451–10456

    Article  CAS  Google Scholar 

  41. Warakulwit C, Nguyen T, Majimel J, Delville MH, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A. Nano Lett, 2008, 8: 500–504

    Article  CAS  Google Scholar 

  42. Wood M, Zhang B. ACS Nano, 2015, 9: 2454–2464

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: Wiley, 2001

    Google Scholar 

  44. Shao Y, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A. Anal Chem, 1997, 69: 1627–1634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Founding of China (51205333, 21273182, 21327002, 21321062, 21061120456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Zhan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FF., Wang, W., He, X. et al. Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution. Sci. China Chem. 60, 649–655 (2017). https://doi.org/10.1007/s11426-017-9029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9029-9

Keywords

Navigation