Skip to main content
Log in

A complementary approach to experimental modeling and analysis of welding processes: dimensional analysis

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Welding modeling is beneficial for evaluating welding processes and monitoring welding quality. The majority of welding modeling is accomplished through theoretical analysis and experimental techniques. A high level of logical reasoning and an in-depth understanding of welding mechanisms are prerequisites for theoretical analysis. Experimental approaches are appropriate for single-objective systems with few variables and inadequate for complex systems with many variables. Dimensional analysis is a suitable and complementary approach to welding modeling that may address the shortcomings of the experimental method and theoretical analysis. To determine the relationships between welding variables, dimensional analysis starts with the dimensions of the welding variables and then combines related variables into various dimensionless numbers. In this study, dimensional analysis is summarized for welding modeling and process analysis. The steps of establishing relationships between variables and the application of qualitative and quantitative analysis are discussed in detail. Dimensional analysis drastically decreases the number of variables, which makes it easier to design experiments. A proposal of this study is to convert dimensional operations into matrix operations, providing a potential solution for their programmatic implementation. Dimensional analysis has been widely applied in heat transfer, arc, molten pool, and welding processes. This study may provide a feasible solution for welding modeling researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Cui S, Shi Y, Cui Y, Zhu T (2018) The impact toughness of novel keyhole tig welded duplex stainless steel joints. Engineering Failure Analysis 94:226–231. https://doi.org/10.1016/j.engfailanal.2018.08.009

    Article  Google Scholar 

  2. Zhang S, Shen Y, Qiu H (2013) The technology and welding joint properties of hybrid laser-tig welding on thick plate. Optics & Laser Technology 48:381–388. https://doi.org/10.1016/j.optlastec.2012.11.014

    Article  Google Scholar 

  3. Migiakis K, Daniolos N, Papadimitriou G (2010) Plasma keyhole welding of uns s32760 super duplex stainless steel: microstructure and mechanical properties. Materials and Manufacturing Processes 25(7):598–605. https://doi.org/10.1080/10426910903179955

    Article  Google Scholar 

  4. Ho C (2005) Fusion zone during focused electron-beam welding. Journal of materials processing technology 167(2–3):265–272. https://doi.org/10.1016/j.jmatprotec.2005.05.025

    Article  Google Scholar 

  5. Zhang YM, Yang YP, Zhang W, Na SJ (2020) Advanced welding manufacturing: A brief analysis and review of challenges and solutions. Journal of Manufacturing Science and Engineering 142(11):110816. https://doi.org/10.1115/1.4047947

  6. Cui, Y. & Shi, Y. Chen, S., Zhang, Y. & Feng, Z. (eds) Research evolution on intelligentized k-tig welding. (eds Chen, S., Zhang, Y. & Feng, Z.) Transactions on Intelligent Welding Manufacturing, Vol. 4, 23–40 (Springer, Singapore, 2022)

  7. Zhao S, Yang L, Huang Y, Zhao D, Xu S (2019) A study on welding mode transition by electrical detection of laser-induced plasma at varying energy levels. The International Journal of Advanced Manufacturing Technology 104(1):893–906. https://doi.org/10.1007/s00170-019-03916-7

    Article  Google Scholar 

  8. Hartz-Behrend, K. et al. Stud arc welding in a magnetic field–investigation of the influences on the arc motion, Vol. 550, 012003 (IOP Publishing, Toulouse, France, 2014)

  9. Liu L, Xu X, Xu G, Zhang Z (2022) Effect of laser on double-arc physical characteristics in pulsed laser-induced double-tig welding. The International Journal of Advanced Manufacturing Technology 119(3):1515–1529. https://doi.org/10.1007/s00170-021-08277-8

    Article  Google Scholar 

  10. Wu K, Zeng Y, Zhang M, Hong X, Xie P (2022) Effect of high-frequency phase shift on metal transfer and weld formation in aluminum alloy double-wire dp-gmaw. Journal of Manufacturing Processes 75:301–319. https://doi.org/10.1016/j.jmapro.2021.12.005

    Article  Google Scholar 

  11. Jamrozik W, Górka J, Kik T (2021) Temperature-based prediction of joint hardness in tig welding of inconel 600, 625 and 718 nickel superalloys. Materials 14(2):442. https://doi.org/10.3390/ma14020442

    Article  Google Scholar 

  12. Omprakasam S, Marimuthu K, Raghu R, Velmurugan T (2022) Statistical modelling and optimization of tig welding process parameters using taguchi’s method. Strojniški vestnik-Journal of Mechanical Engineering 68(3):200–209. https://doi.org/10.5545/sv-jme.2021.7414

    Article  Google Scholar 

  13. Natrayan L, Anand R, Kumar SS (2021) Optimization of process parameters in tig welding of aisi 4140 stainless steel using taguchi technique. Materials Today: Proceedings 37:1550–1553. https://doi.org/10.1016/j.matpr.2020.07.150

    Article  Google Scholar 

  14. Balasubramanian M, Jayabalan V, Balasubramanian V (2007) Optimizing the pulsed current gtaw parameters to attain maximum impact toughness. Materials and Manufacturing Processes 23(1):69–73. https://doi.org/10.1080/10426910701524584

    Article  Google Scholar 

  15. Shao Y, Wang Y, Yang Z, Shi C (2017) Plasma-mig hybrid welding hot cracking susceptibility of 7075 aluminum alloy based on optimum of weld penetration. Acta Metall Sin 54(4):547–556. https://doi.org/10.11900/0412.1961.2017.00357

    Article  Google Scholar 

  16. Saha A, Mondal SC (2022) Modelling bead width and bead hardness in submerged arc welding using dimensional analysis. International Journal of Manufacturing Technology and Management 36(1):13–27. https://doi.org/10.1504/IJMTM.2022.121578

    Article  Google Scholar 

  17. Mukherjee T, Zuback J, De A, DebRoy T (2016) Printability of alloys for additive manufacturing. Scientific reports 6(1):1–8. https://doi.org/10.1038/srep19717

    Article  Google Scholar 

  18. Prater T, Cox C, Gibson B, Strauss AM, Cook GE (2012) Dimensional analysis and a potential classification algorithm for prediction of wear in friction stir welding of metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226(11):2759–2769. https://doi.org/10.1177/0954406212438987

    Article  Google Scholar 

  19. Roy G, Nandan R, DebRoy T (2006) Dimensionless correlation to estimate peak temperature during friction stir welding. Science and Technology of Welding and Joining 11(5):606–608. https://doi.org/10.1179/174329306x122811

    Article  Google Scholar 

  20. Kumar Arya, H., Singh, K. & Saxena, R. Cooling time (t8/5) model for submerged arc welded pressure vessel steel using dimensional analysis. Journal of Pressure Vessel Technology 139 (6), 061404 (2017). 10.1115/1.4038018

  21. Mendez, P. Reduced order models for welding and solidification processes, Vol. 861, 012003 (IOP Publishing, Jonkoping, Sweden, 2020)

  22. Mendez PF, Ordonez F (2005) Scaling laws from statistical data and dimensional analysis. Journal of Applied Mechanics 72(5):648–657. https://doi.org/10.1115/1.1943434

    Article  MATH  Google Scholar 

  23. Chapuis J, Roméro E, Soulié F, Bordreuil C, Fras G (2016) Transient behaviour of deposition of liquid metal droplets on a solid substrate. Heat and Mass Transfer 52(10):2283–2292. https://doi.org/10.1007/s00231-015-1742-9

    Article  Google Scholar 

  24. Fourier, J. B. J. Théorie analytique de la chaleur (Firmin Didot, Paris, 1822)

  25. Clerk-Maxwell J (1869) Remarks on the mathematical classification of physical quantities. Proceedings of the London Mathematical Society 1(1):224–233. https://doi.org/10.1112/plms/s1-3.1.224

    Article  MathSciNet  Google Scholar 

  26. Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Physical review 4(4):345–376. https://doi.org/10.1103/PhysRev.4.345

    Article  Google Scholar 

  27. Rayleigh L (1915) The principle of similitude. Nature 95:66–68. https://doi.org/10.1038/095202d0

    Article  Google Scholar 

  28. Taylor, G. I. The formation of a blast wave by a very intense explosion.-ii. the atomic explosion of 1945. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 201 (1065), 175–186 (1950). 10.1098/rspa.1950.0050

  29. Mendez, P. F. Scaling laws in welding modeling, 103–108 (ASM, Pine Mountain, GA, 2005)

  30. Zhang W, Roy G, Elmer J, DebRoy T (2003) Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel. Journal of Applied Physics 93(5):3022–3033. https://doi.org/10.1063/1.1540744

    Article  Google Scholar 

  31. Chakraborty S, Sarkar S, Dutta P (2002) Scaling analysis of momentum and heat transport in gas tungsten arc weld pools. Science and technology of welding and joining 7(2):88–94. https://doi.org/10.1179/136217102225001322

    Article  Google Scholar 

  32. Murray P (2002) Selecting parameters for gmaw using dimensional analysis. Welding Journal 81(7):125–131

    Google Scholar 

  33. Murray P (2000) Stability of droplets in gas metal arc welding. Science and technology of welding and joining 5(4):221–226. https://doi.org/10.1179/136217100101538245

    Article  Google Scholar 

  34. Murray P, Scotti A (1999) Depth of penetration in gas metal arc welding. Science and Technology of Welding and Joining 4(2):112–117. https://doi.org/10.1179/136217199101537644

    Article  Google Scholar 

  35. Fuerschbach P (1996) Measurement and prediction of energy transfer efficiency in laser beam welding. Welding Journal 75(1):24–34

  36. Fuerschbach P, Eisler G (2002) Determination of material properties for welding models by means of arc weld experiments, 782–786. ASM, Phenix, AZ

    Google Scholar 

  37. Ion JC, Shercliff HR, Ashby MF (1992) Diagrams for laser materials processing. Acta metallurgica et materialia 40(7):1539–1551. https://doi.org/10.1016/0956-7151(92)90097-X

    Article  Google Scholar 

  38. Yasko, O. Correlation of the characteristics of electric arcs. Journal of Physics D: Applied Physics 2 (5), 733 (1969). 10.1088/0022-3727/2/5/312

  39. Mendez P, Eagar T, Ramirez M, Trapaga G (2001) Order-of-magnitude scaling of the cathode region in an axisymmetric transferred electric arc. Metallurgical and Materials Transactions B 32(3):547–554. https://doi.org/10.1007/s11663-001-0039-1

    Article  Google Scholar 

  40. Kou S (1982) Welding, glazing, and heat treating-a dimensional analysis of heat flow. Metallurgical Transactions A 13(3):363–371. https://doi.org/10.1007/BF02643345

    Article  Google Scholar 

  41. DebRoy T, David S (1995) Physical processes in fusion welding. Reviews of modern physics 67(1):85–112. https://doi.org/10.1103/RevModPhys.67.85

    Article  Google Scholar 

  42. Rivas D, Ostrach S (1992) Scaling of low-prandtl-number thermocapillary flows. International Journal of Heat and Mass Transfer 35(6):1469–1479. https://doi.org/10.1016/0017-9310(92)90037-S

    Article  MATH  Google Scholar 

  43. Oreper G, Szekely J (1987) A comprehensive representation of transient weldpool development in spot welding operations. Metallurgical Transactions A 18(7):1325–1332. https://doi.org/10.1007/BF02647202

    Article  Google Scholar 

  44. Nguyen T, Weckman D, Johnson D (2007) Predicting onset of high speed gas metal arc weld bead defects using dimensional analysis techniques. Science and Technology of welding and Joining 12(7):634–648. https://doi.org/10.1179/174329307x236797

    Article  Google Scholar 

  45. Wu K, Xie P, Liu Z, Zeng M, Liang Z (2020) Investigation of double arc interaction mechanism and quantitative analysis of double arc offset in high-power double-wire dp-gmaw. Journal of Manufacturing Processes 49:423–437. https://doi.org/10.1016/j.jmapro.2019.10.022

    Article  Google Scholar 

  46. Simon, V., Weigand, B. & Gomaa, H. Dimensional analysis for engineers Vol. 650 of Mathematical Engineering (Springer Nature, Switzerland, 2017)

  47. Payton, L. N., Chandrasekaran, V. V. & Hunko, W. S. Dimensional analysis of thermal fields surrounding friction stir welding process, Vol. 46445, V02BT02A003 (American Society of Mechanical Engineers, Phoenix, AZ, 2014)

  48. Shotri R, Faes K, Racineux G, De A (2022) Analytical estimation of electromagnetic pressure, flyer impact velocity, and welded joint length in magnetic pulse welding. Metals 12(2):276. https://doi.org/10.3390/met12020276

    Article  Google Scholar 

  49. Zong R, Chen J, Wu C, Lou D (2021) Numerical analysis of molten metal behavior and undercut formation in high-speed gmaw. Journal of Materials Processing Technology 297:117266. https://doi.org/10.1016/j.jmatprotec.2021.117266

    Article  Google Scholar 

  50. Barr DI (1984) Consolidation of basics of dimensional analysis. Journal of Engineering Mechanics 110(9):1357–1376. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:9(1357)

    Article  Google Scholar 

  51. Szirtes T (2007) Applied dimensional analysis and modeling, 2nd edn. Butterworth-Heinemann, Burlington

    MATH  Google Scholar 

  52. Washio T, Motoda H (1999) Extension of dimensional analysis for scale-types and its application to discovery of admissible models of complex processes, 129–147. Citeseer, Stetkolich

    Google Scholar 

  53. Meng X, Qin G, Zou Z (2018) Characterization of molten pool behavior and humping formation tendency in high-speed gas tungsten arc welding. International Journal of Heat and Mass Transfer 117:508–516. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.124

    Article  Google Scholar 

  54. Gao G (2021) Dimensional Analysis: Theories and Applications. Sciences Press, Beijing

    Google Scholar 

  55. Arora A, Roy G, DebRoy T (2010) Cooling rate in 800 to 500 c range from dimensional analysis. Science and Technology of Welding and Joining 15(5):423–427. https://doi.org/10.1179/136217110x12720264008394

    Article  Google Scholar 

  56. Han G, Ha S, Lee H, Murugan SP, Park Y (2019) Prediction of shear fracture load in resistance projection welding with dissimilar materials and thickness of high strength steel. Transactions of the Korean Society of Mechanical Engineers A 43(11):775–785. https://doi.org/10.3795/KSME-A.2019.43.11.775

    Article  Google Scholar 

  57. Zhu Y, Luo Y, Ma N (2019) Relationship between equivalent surface heat source and induction heating parameters for analysis of thermal conduction in thick plate bending. Ships and Offshore Structures 14(8):921–928. https://doi.org/10.1080/17445302.2019.1589762

    Article  Google Scholar 

  58. Stringham BJ, Nelson TW, Sorensen CD (2018) Non-dimensional modeling of the effects of weld parameters on peak temperature and cooling rate in friction stir welding. Journal of Materials Processing Technology 255:816–830. https://doi.org/10.1016/j.jmatprotec.2017.11.044

    Article  Google Scholar 

  59. Meng X, Qin G (2019) A theoretical study of molten pool behavior and humping formation in full penetration high-speed gas tungsten arc welding. International Journal of Heat and Mass Transfer 132:143–153. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.004

    Article  Google Scholar 

  60. Van Elsen M, Al-Bender F, Kruth J-P (2008) Application of dimensional analysis to selective laser melting. Rapid Prototyping Journal 14(1):15–22. https://doi.org/10.1108/13552540810841526

    Article  Google Scholar 

  61. Farzadi A, Serajzadeh S, Kokabi A (2008) Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum. The International Journal of Advanced Manufacturing Technology 38(3–4):258–267. https://doi.org/10.1007/s00170-007-1106-9

    Article  Google Scholar 

  62. Kumar A, DebRoy T (2007) Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions. Metallurgical and Materials Transactions A 38(3):506–519. https://doi.org/10.1007/s11661-006-9083-4

    Article  Google Scholar 

  63. He X, Fuerschbach P, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. Journal of Physics D: Applied Physics 36(12):1388. https://doi.org/10.1088/0022-3727/36/12/306

    Article  Google Scholar 

  64. Hu Y, He X, Yu G, Zhao S (2017) Capillary convection in pulsed-butt welding of miscible dissimilar couple. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231(13):2429–2440. https://doi.org/10.1177/0954406216637086

    Article  Google Scholar 

  65. Zhang W, Kim C-H, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding-part ii: Application to fillet welding of mild steel. Journal of Applied Physics 95(9):5220–5229. https://doi.org/10.1063/1.1699486

    Article  Google Scholar 

  66. Li Z et al (2022) Probing thermocapillary convection and multisolute dilution in laser welding of dissimilar miscible metals. International Journal of Thermal Sciences 172(1):107242. https://doi.org/10.1016/j.ijthermalsci.2021.107242

    Article  Google Scholar 

  67. Wang X, Fan D, Huang J, Huang Y et al (2015) Numerical simulation of heat transfer and fluid flow for arc-weld pool in tig welding. Journal of Mechanical Engineering 51(10):69–78. https://doi.org/10.3901/JME.2015.10.069

    Article  Google Scholar 

  68. Wang X, Huang J, Huang Y, Fan D, Guo Y (2017) Investigation of heat transfer and fluid flow in activating tig welding by numerical modeling. Applied Thermal Engineering 113:27–35. https://doi.org/10.1016/j.applthermaleng.2016.11.008

    Article  Google Scholar 

  69. Farzadi, A., Morakabiyan Esfahani, M. & Alavi Zaree, S. Theoretical and experimental investigation of gas metal arc weld pool in commercially pure aluminum: Effect of welding current on geometry. Journal of Central South University 24 (11), 2556–2564 (2017). 10.1007/s11771-017-3669-4

  70. Lim Y, Farson D, Cho M, Cho J (2009) Stationary gmaw-p weld metal deposit spreading. Science and Technology of Welding and Joining 14(7):626–635. https://doi.org/10.1179/136217109x441173

    Article  Google Scholar 

  71. Monier R et al (2016) In situ experimental measurement of temperature field and surface tension during pulsed gmaw. Welding in the World 60(5):1021–1028. https://doi.org/10.1007/40194-016-0358-0

    Article  Google Scholar 

  72. Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low weber numbers. Physics of fluids 9(11):3172–3187. https://doi.org/10.1063/1.869434

    Article  Google Scholar 

  73. He X, Elmer J, DebRoy T (2005) Heat transfer and fluid flow in laser microwelding. Journal of Applied Physics 97(8):084909. https://doi.org/10.1063/1.1873032

    Article  Google Scholar 

  74. Das D, Bal KS, Pratihar DK, Roy GG (2021) Correlating the weld-bead’s ‘macro-, micro-features’ with the weld-pool’s ‘fluid flow’ for electron beam welded ss 201 plates. International Journal of Mechanical Sciences 210:106734. https://doi.org/10.1016/j.ijmecsci.2021.106734

    Article  Google Scholar 

  75. Gan Z, Liu H, Li S, He X, Yu G (2017) Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of ni-based alloy on cast iron. International Journal of Heat and Mass Transfer 111:709–722. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.055

    Article  Google Scholar 

  76. Bag S, De A (2010) Probing reliability of transport phenomena based heat transfer and fluid flow analysis in autogeneous fusion welding process. Metallurgical and Materials Transactions A 41(9):2337–2347. https://doi.org/10.1007/s11661-010-0272-9

    Article  Google Scholar 

  77. Li Z et al (2019) Study of thermal behavior and solidification characteristics during laser welding of dissimilar metals. Results in Physics 12:1062–1072. https://doi.org/10.1016/j.rinp.2018.12.017

    Article  Google Scholar 

  78. Hu Y et al (2012) Heat and mass transfer in laser dissimilar welding of stainless steel and nickel. Applied Surface Science 258(15):5914–5922. https://doi.org/10.1016/j.apsusc.2012.02.143

    Article  Google Scholar 

  79. Schricker K, Alhomsi M, Bergmann JP (2020) Thermal efficiency in laser-assisted joining of polymer-metal composites. Materials 13(21):4875. https://doi.org/10.3390/ma13214875

    Article  Google Scholar 

  80. Chowdhury S et al (2020) Identification of modes of welding using parametric studies during ytterbium fiber laser welding. Journal of Manufacturing Processes 57:748–761. https://doi.org/10.1016/j.jmapro.2020.07.038

    Article  Google Scholar 

  81. Makwana P, Shome M, Goecke S-F, De A (2018) Fast responsive control of current and voltage waveforms for gas metal arc brazing of thin zinc-coated steel sheets. Journal of Materials Processing Technology 254:171–178. https://doi.org/10.1016/j.jmatprotec.2017.11.028

    Article  Google Scholar 

  82. Wang Y, Lu Y, Mendez PF (2019) Scaling expressions of characteristic values for a moving point heat source in steady state on a semi-infinite solid. International Journal of Heat and Mass Transfer 135:1118–1129. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.042

    Article  Google Scholar 

  83. Mendez PF, Lu Y, Wang Y (2018) Scaling analysis of a moving point heat source in steady-state on a semi-infinite solid. Journal of Heat Transfer 140(8):081301. https://doi.org/10.1115/1.4039353

    Article  Google Scholar 

  84. Wang Y, Mendez PF (2022) Isotherm penetration depth under a moving gaussian surface heat source on a thick substrate. International Journal of Thermal Sciences 172:107334. https://doi.org/10.1016/j.ijthermalsci.2021.107334

    Article  Google Scholar 

  85. Wood G, Islam SA, Mendez PF (2014) Calibrated expressions for welding and their application to isotherm width in a thick plate. Soldagem & Inspeção 19(3):212–220. https://doi.org/10.1590/0104-9224/Si1903.03

    Article  Google Scholar 

  86. Prisco U (2021) Shape of the melt pool produced by a moving gaussian heat source. Welding in the World 65(11):2105–2118. https://doi.org/10.1007/s40194-021-01167-3

    Article  Google Scholar 

  87. Lu Y, Mendez PF (2021) Characteristic values of the temperature field induced by a moving line heat source. International Journal of Heat and Mass Transfer 166:120671. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120671

    Article  Google Scholar 

  88. Lu Y, Wang Y, Mendez PF (2020) Width of thermal features induced by a 2-d moving heat source. International Journal of Heat and Mass Transfer 156:119793. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119793

    Article  Google Scholar 

  89. Duggirala A, Kalvettukaran P, Acherjee B, Mitra S (2021) Numerical simulation of the temperature field, weld profile, and weld pool dynamics in laser welding of aluminium alloy. Optik 247:167990. https://doi.org/10.1016/j.ijleo.2021.167990

    Article  Google Scholar 

  90. Li Z et al (2020) Analysis of surface tension driven flow and solidification behavior in laser linear welding of stainless steel. Optics & Laser Technology 123:105914. https://doi.org/10.1016/j.optlastec.2019.105914

    Article  Google Scholar 

  91. Haferl S, Poulikakos D (2003) Experimental investigation of the transient impact fluid dynamics and solidification of a molten microdroplet pile-up. International journal of heat and mass transfer 46(3):535–550. https://doi.org/10.1016/S0017-9310(02)00289-2

    Article  Google Scholar 

  92. Rykalin N, Nikolaev A (1971) Welding arc heat flow. Welding in the World 9(3–4):112–133

    Google Scholar 

  93. Rozenthal D (1946) The theory of moving sources of heat and its application to metal treatment. Journal of Fluids Engineering, Transactions of the ASME 68(8):849–866. https://doi.org/10.1115/1.4018624

    Article  Google Scholar 

  94. Grams MR, Mendez PF (2021) Scaling analysis of the thermal stress field produced by a moving point heat source in a thin plate. Journal of Applied Mechanics 88(1):011001. https://doi.org/10.1115/1.4048318

  95. Limmaneevichitr C, Kou S (2000) Experiments to simulate effect of marangoni convection on weld pool shape. Welding Journal 79(8):231–237

    Google Scholar 

  96. Robert A, Debroy T (2001) Geometry of laser spot welds from dimensionless numbers. Metallurgical and materials transactions B 32(5):941–947. https://doi.org/10.1007/s11663-001-0080-0

    Article  Google Scholar 

  97. Choi S, Kim Y, Yoo C (1999) Dimensional analysis of metal transfer in gma welding. Journal of Physics D: Applied Physics 32(3):326–334. https://doi.org/10.1088/0022-3727/32/3/021

    Article  Google Scholar 

  98. Grams MR, Mendez PF (2022) Effect of compliance on residual stresses in manufacturing with moving heat sources. Journal of Applied Mechanics 89(2):021004. https://doi.org/10.1115/1.4052736

    Article  Google Scholar 

  99. Novokreschchenov V, Rodyakina R, Kozorez M (2014) Determination of the penetration depth in electron beam welding by dimensional analysis. Welding International 28(8):639–644. https://doi.org/10.1080/09507116.2013.849398

    Article  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Guangdong Province (grant no. 2020A1515011050) and the Key Research and Development Program of Guangdong Province (grant no. 2020B090928003).

Author information

Authors and Affiliations

Authors

Contributions

Zhuoyong Liang collected and organized the data, conceived and designed the analysis, and conceived and wrote the paper; Yonghua Shi conceived and designed the analysis, funded, and wrote the paper; Tao Xu collected and organized the data, and revised the paper; Zishun Wang and Jiatong Zhan contributed in writing and revision.

Corresponding author

Correspondence to Yonghua Shi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare that this work has not been published before, that it is not under consideration for publication elsewhere, and that all coauthors have approved its publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Derivation of Eq. (7)

Appendix. Derivation of Eq. (7)

The dimensional equations of welding variables (\( X_{1}\), \( X_{2} \), \(\cdots \), \( X_{m} \)) in Table 1 are expressed as

$$\begin{aligned} \left\{ \begin{aligned} \left[ X_{1} \right]&=\left[ D_{1}\right] ^{a_{11}} \left[ D_{2}\right] ^{a_{21}}\cdots \left[ D_{m}\right] ^{a_{m1}} \\ \left[ X_{2} \right]&=\left[ D_{1}\right] ^{a_{12}} \left[ D_{2}\right] ^{a_{22}}\cdots \left[ D_{m}\right] ^{a_{m2}} \\ \vdots \\ \left[ X_{m} \right]&=\left[ D_{1}\right] ^{a_{1m}} \left[ D_{2}\right] ^{a_{2m}}\cdots \left[ D_{m}\right] ^{a_{mm}} \end{aligned} \right. \end{aligned}$$
(14)

Taking the logarithm of both ends of Eq. (14) and expressing it in matrix form at the same time,

$$\begin{aligned} \left[ \begin{array}{c} \ln {\left[ X_{1} \right] } \\ \ln {\left[ X_{2} \right] } \\ \vdots \\ \ln {\left[ X_{m} \right] } \end{array} \right] = \left[ \begin{array}{cccc} a_{11} &{} a_{21} &{} \cdots &{} a_{m1} \\ a_{12} &{} a_{22} &{} \cdots &{} a_{m2} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{1m} &{} a_{2m} &{} \cdots &{} a_{mm} \end{array} \right] \left[ \begin{array}{c} \ln {\left[ D_{1}\right] } \\ \ln {\left[ D_{2}\right] } \\ \vdots \\ \ln {\left[ D_{m}\right] } \end{array} \right] \end{aligned}$$
(15)

Doing the same for Eq. (2) and the dimensional equations of welding variables (\( X_{m+1} \),\( X_{m+2} \),\( \cdots \),\( X_{n} \)),

$$\begin{aligned} \left[ \begin{array}{c} \ln {\left[ X_{m+1} \right] } \\ \ln {\left[ X_{m+2} \right] } \\ \vdots \\ \ln {\left[ X_{n} \right] } \end{array} \right] = \left[ \begin{array}{cccc} \kappa _{11} &{} \kappa _{12} &{} \cdots &{} \kappa _{1m} \\ \kappa _{21} &{} \kappa _{22} &{} \cdots &{} \kappa _{2m} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \kappa _{k1} &{} \kappa _{k2} &{} \cdots &{} \kappa _{km} \end{array} \right] \left[ \begin{array}{c} \ln {\left[ X_{1}\right] } \\ \ln {\left[ X_{2}\right] } \\ \vdots \\ \ln {\left[ X_{m}\right] } \end{array} \right] \end{aligned}$$
(16)
$$\begin{aligned} \begin{aligned}&\left[ \begin{array}{c} \ln {\left[ X_{m+1} \right] } \\ \ln {\left[ X_{m+2} \right] } \\ \vdots \\ \ln {\left[ X_{n} \right] } \end{array} \right] = \\&\left[ \begin{array}{cccc} a_{1(m+1)} &{} a_{2(m+1)} &{} \cdots &{} a_{m(m+1)} \\ a_{1(m+2)} &{} a_{2(m+2)} &{} \cdots &{} a_{m(m+2)} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{1n} &{} a_{2n} &{} \cdots &{} a_{mn} \end{array} \right] \left[ \begin{array}{c} \ln {\left[ D_{1}\right] } \\ \ln {\left[ D_{2}\right] } \\ \vdots \\ \ln {\left[ D_{m}\right] } \end{array} \right] \end{aligned} \end{aligned}$$
(17)

Combining Eq. (15), Eq. (16), and Eq. (17),

$$\begin{aligned} \begin{aligned}&\left[ \begin{array}{cccc} \kappa _{11} &{} \kappa _{12} &{} \cdots &{} \kappa _{1m} \\ \kappa _{21} &{} \kappa _{22} &{} \cdots &{} \kappa _{2m} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \kappa _{k1} &{} \kappa _{k2} &{} \cdots &{} \kappa _{km} \end{array} \right] \left[ \begin{array}{cccc} a_{11} &{} a_{21} &{} \cdots &{} a_{m1} \\ a_{12} &{} a_{22} &{} \cdots &{} a_{m2} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{1m} &{} a_{2m} &{} \cdots &{} a_{mm} \end{array} \right] \\&= \left[ \begin{array}{cccc} a_{1(m+1)} &{} a_{2(m+1)} &{} \cdots &{} a_{m(m+1)} \\ a_{1(m+2)} &{} a_{2(m+2)} &{} \cdots &{} a_{m(m+2)} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{1n} &{} a_{2n} &{} \cdots &{} a_{mn} \end{array} \right] \end{aligned} \end{aligned}$$
(18)

Assuming that,

$$\begin{aligned} \begin{array}{l} {\textbf {K}} = \left[ \begin{array}{cccc} \kappa _{11} &{}\kappa _{12} &{}\cdots &{}\kappa _{1m} \\ \kappa _{21} &{}\kappa _{22} &{}\cdots &{}\kappa _{2m} \\ \vdots &{}\vdots &{}\ddots &{} \vdots \\ \kappa _{k1} &{}\kappa _{k2} &{}\cdots &{}\kappa _{km} \end{array} \right] \\ {\textbf {A}} = \left[ \begin{array}{cccc} a_{11} &{} a_{12} &{}\cdots &{} a_{1m} \\ a_{21} &{} a_{22} &{}\cdots &{} a_{2m} \\ \vdots &{}\vdots &{}\ddots &{} \vdots \\ a_{m1} &{} a_{m2} &{}\cdots &{} a_{mm} \end{array} \right] \\ {\textbf {B}} = \left[ \begin{array}{cccc} a_{1(m+1)} &{} a_{1(m+2)} &{}\cdots &{} a_{1n} \\ a_{2(m+1} &{} a_{2(m+2)} &{}\cdots &{} a_{2n} \\ \vdots &{}\vdots &{}\ddots &{} \vdots \\ a_{m(m+1} &{} a_{m(m+2)} &{}\cdots &{} a_{mn} \end{array} \right] \end{array} \end{aligned}$$

Then, there are,

$$\begin{aligned} {\textbf {K}}{} {\textbf {A}}^T={\textbf {B}}^T \end{aligned}$$
(19)

where T is the transpose of the matrix. Performing a matrix transpose on Eq. (19),

$$\begin{aligned} {\textbf {A}}{} {\textbf {K}}^T={\textbf {B}} \end{aligned}$$
(20)

Since the matrix \( {\textbf {A}} \) is full rank and the inverse matrix \( {\textbf {A}}^{-1} \) exists. Then both ends of Eq. (20) are simultaneously left multiplied by \( {\textbf {A}}^{-1} \), which gives

$$\begin{aligned} {\textbf {K}}^T={\textbf {A}}^{-1}{} {\textbf {B}} \end{aligned}$$
(21)
$$\begin{aligned} {\textbf {K}}=\left( {\textbf {A}}^{-1}{} {\textbf {B}} \right) ^T \end{aligned}$$
(22)

So that’s the end of the derivation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Shi, Y., Xu, T. et al. A complementary approach to experimental modeling and analysis of welding processes: dimensional analysis. Int J Adv Manuf Technol 127, 3077–3095 (2023). https://doi.org/10.1007/s00170-023-11544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11544-5

Keywords

Navigation